社交网络的中间性中心性近似

D. Ostrowski
{"title":"社交网络的中间性中心性近似","authors":"D. Ostrowski","doi":"10.1109/ICOSC.2015.7050857","DOIUrl":null,"url":null,"abstract":"A challenge in the research of Social Networks is the large scale analysis of graphs. One of the most valuable metrics in the evaluation of graphs is betweenness-centrality. In this paper, we define an approximation of betweenness-centrality for the purpose of building a predictive model of Social Networks. The methodology presented describes a bounded distance approximation of betweenness-centrality designed for implementation within a parallel architecture. Through our proposed design pattern, we are able to leverage Big Data technologies to determine metrics in the context of ever expanding internet-based data resources.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An approximation of betweenness centrality for Social Networks\",\"authors\":\"D. Ostrowski\",\"doi\":\"10.1109/ICOSC.2015.7050857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A challenge in the research of Social Networks is the large scale analysis of graphs. One of the most valuable metrics in the evaluation of graphs is betweenness-centrality. In this paper, we define an approximation of betweenness-centrality for the purpose of building a predictive model of Social Networks. The methodology presented describes a bounded distance approximation of betweenness-centrality designed for implementation within a parallel architecture. Through our proposed design pattern, we are able to leverage Big Data technologies to determine metrics in the context of ever expanding internet-based data resources.\",\"PeriodicalId\":126701,\"journal\":{\"name\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2015.7050857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2015.7050857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

社交网络研究的一个挑战是对图的大规模分析。图的评价中最有价值的指标之一是中间性。在本文中,我们定义了一个近似的中间性-中心性的目的是建立一个预测模型的社会网络。所提出的方法描述了为在并行体系结构中实现而设计的间隔中心性的有界距离近似。通过我们提出的设计模式,我们能够利用大数据技术在不断扩展的基于互联网的数据资源的背景下确定指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approximation of betweenness centrality for Social Networks
A challenge in the research of Social Networks is the large scale analysis of graphs. One of the most valuable metrics in the evaluation of graphs is betweenness-centrality. In this paper, we define an approximation of betweenness-centrality for the purpose of building a predictive model of Social Networks. The methodology presented describes a bounded distance approximation of betweenness-centrality designed for implementation within a parallel architecture. Through our proposed design pattern, we are able to leverage Big Data technologies to determine metrics in the context of ever expanding internet-based data resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信