面向目标情感分类的多通道卷积神经网络

Ting Yuan, Haihui Li, Hongya Zhao, Qianhua Cai, Han Liu, Xiaohui Hu
{"title":"面向目标情感分类的多通道卷积神经网络","authors":"Ting Yuan, Haihui Li, Hongya Zhao, Qianhua Cai, Han Liu, Xiaohui Hu","doi":"10.1109/ICMLC48188.2019.8949286","DOIUrl":null,"url":null,"abstract":"In recent years, targeted sentiment analysis has received great attention as a fine-grained sentiment analysis. Determining the sentiment polarity of a specific target in a sentence is the main task. This paper proposes a multi-channel convolutional neural network (MCL-CNN) for targeted sentiment classification. Our approach can not only parallelize over the words of a sentence but also extract local features effectively. Contexts and targets can be more comprehensively utilized by using part-of-speech information, semantic information and interactive information so that diverse features can be obtained. Finally, experimental results on the SemEval 2014 dataset demonstrate the effectiveness of this method.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Channel Convolutional Neural Network for Targeted Sentiment Classification\",\"authors\":\"Ting Yuan, Haihui Li, Hongya Zhao, Qianhua Cai, Han Liu, Xiaohui Hu\",\"doi\":\"10.1109/ICMLC48188.2019.8949286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, targeted sentiment analysis has received great attention as a fine-grained sentiment analysis. Determining the sentiment polarity of a specific target in a sentence is the main task. This paper proposes a multi-channel convolutional neural network (MCL-CNN) for targeted sentiment classification. Our approach can not only parallelize over the words of a sentence but also extract local features effectively. Contexts and targets can be more comprehensively utilized by using part-of-speech information, semantic information and interactive information so that diverse features can be obtained. Finally, experimental results on the SemEval 2014 dataset demonstrate the effectiveness of this method.\",\"PeriodicalId\":221349,\"journal\":{\"name\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC48188.2019.8949286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

定向情感分析作为一种细粒度的情感分析方法,近年来受到了广泛的关注。确定句子中特定目标的情感极性是主要任务。本文提出了一种多通道卷积神经网络(MCL-CNN)用于目标情感分类。我们的方法不仅可以对句子的单词进行并行化,而且可以有效地提取局部特征。通过使用词性信息、语义信息和交互信息,可以更全面地利用语境和目标,从而获得多样化的特征。最后,在SemEval 2014数据集上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Channel Convolutional Neural Network for Targeted Sentiment Classification
In recent years, targeted sentiment analysis has received great attention as a fine-grained sentiment analysis. Determining the sentiment polarity of a specific target in a sentence is the main task. This paper proposes a multi-channel convolutional neural network (MCL-CNN) for targeted sentiment classification. Our approach can not only parallelize over the words of a sentence but also extract local features effectively. Contexts and targets can be more comprehensively utilized by using part-of-speech information, semantic information and interactive information so that diverse features can be obtained. Finally, experimental results on the SemEval 2014 dataset demonstrate the effectiveness of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信