自动并行化在科学计算工业现代挑战中的应用

Brian Armstrong, R. Eigenmann
{"title":"自动并行化在科学计算工业现代挑战中的应用","authors":"Brian Armstrong, R. Eigenmann","doi":"10.1109/ICPP.2008.65","DOIUrl":null,"url":null,"abstract":"Characteristics of full applications found in scientific computing industries today lead to challenges that are not addressed by state-of-the-art approaches to automatic parallelization.These characteristics are not present in CPU kernel codes nor linear algebra libraries, requiring a fresh look at how to make automatic parallelization apply to today's computational industries using full applications. The challenges to automatic parallelization result from software engineering patterns that implement multifunctionality, reusable execution frameworks, data structures shared across abstract programming interfaces, a multilingual code base for a single application, and the observation that full applications demand more from compile-time analysis than CPU kernel codes do. Each of these challenges has a detrimental impact on compile-time analysis required for automatic parallelization. Then, focusing on a set of target loops that are parallelizable by hand and that result in speedups on par with the distributed parallel version of the full applications, we determine the prevalence of a number of issues that hinder automatic parallelization. These issues point to enabling techniques that are missing from the state-of-the-art.In order for automatic parallelization to become utilizedin today's scientific computing industries, the challenges described in this paper must be addressed.","PeriodicalId":388408,"journal":{"name":"2008 37th International Conference on Parallel Processing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Application of Automatic Parallelization to Modern Challenges of Scientific Computing Industries\",\"authors\":\"Brian Armstrong, R. Eigenmann\",\"doi\":\"10.1109/ICPP.2008.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Characteristics of full applications found in scientific computing industries today lead to challenges that are not addressed by state-of-the-art approaches to automatic parallelization.These characteristics are not present in CPU kernel codes nor linear algebra libraries, requiring a fresh look at how to make automatic parallelization apply to today's computational industries using full applications. The challenges to automatic parallelization result from software engineering patterns that implement multifunctionality, reusable execution frameworks, data structures shared across abstract programming interfaces, a multilingual code base for a single application, and the observation that full applications demand more from compile-time analysis than CPU kernel codes do. Each of these challenges has a detrimental impact on compile-time analysis required for automatic parallelization. Then, focusing on a set of target loops that are parallelizable by hand and that result in speedups on par with the distributed parallel version of the full applications, we determine the prevalence of a number of issues that hinder automatic parallelization. These issues point to enabling techniques that are missing from the state-of-the-art.In order for automatic parallelization to become utilizedin today's scientific computing industries, the challenges described in this paper must be addressed.\",\"PeriodicalId\":388408,\"journal\":{\"name\":\"2008 37th International Conference on Parallel Processing\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 37th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2008.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 37th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2008.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在当今的科学计算行业中,完整应用程序的特点带来了一些挑战,而这些挑战是最先进的自动并行化方法无法解决的。这些特征在CPU内核代码和线性代数库中都不存在,因此需要重新审视如何使用完整的应用程序将自动并行化应用于当今的计算行业。自动并行化的挑战来自于实现多功能的软件工程模式、可重用的执行框架、跨抽象编程接口共享的数据结构、单个应用程序的多语言代码库,以及完整的应用程序对编译时分析的要求比CPU内核代码更多的观察。这些挑战都会对自动并行化所需的编译时分析产生不利影响。然后,将重点放在一组可手动并行的目标循环上,这些循环的加速速度与完整应用程序的分布式并行版本相当,我们确定了阻碍自动并行化的许多问题的普遍性。这些问题指出了最先进的技术所缺少的启用技术。为了使自动并行化在当今的科学计算行业中得到利用,必须解决本文中描述的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Automatic Parallelization to Modern Challenges of Scientific Computing Industries
Characteristics of full applications found in scientific computing industries today lead to challenges that are not addressed by state-of-the-art approaches to automatic parallelization.These characteristics are not present in CPU kernel codes nor linear algebra libraries, requiring a fresh look at how to make automatic parallelization apply to today's computational industries using full applications. The challenges to automatic parallelization result from software engineering patterns that implement multifunctionality, reusable execution frameworks, data structures shared across abstract programming interfaces, a multilingual code base for a single application, and the observation that full applications demand more from compile-time analysis than CPU kernel codes do. Each of these challenges has a detrimental impact on compile-time analysis required for automatic parallelization. Then, focusing on a set of target loops that are parallelizable by hand and that result in speedups on par with the distributed parallel version of the full applications, we determine the prevalence of a number of issues that hinder automatic parallelization. These issues point to enabling techniques that are missing from the state-of-the-art.In order for automatic parallelization to become utilizedin today's scientific computing industries, the challenges described in this paper must be addressed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信