{"title":"基于多层感知器的单快照多目标到达方向估计","authors":"Jonas Fuchs, R. Weigel, M. Gardill","doi":"10.1109/ICMIM.2019.8726554","DOIUrl":null,"url":null,"abstract":"An alternative approach to high-resolution direction-of-arrival estimation in the context of automotive FMCW signal processing is shown by training a neural network with simulation as well as experimental data to estimate the mean and distance of the azimuth angles from two targets. Testing results are post-processed to obtain the estimated azimuth angles which can be validated afterwards. The performance of the proposed neural network is then compared with a reference implementation of a maximum likelihood estimator. Final evaluations show super-resolution like performance with significantly reduced computation time, which is expected to have an impact on future multi-dimensional high-resolution DoA estimation.","PeriodicalId":225972,"journal":{"name":"2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Single-Snapshot Direction-of-Arrival Estimation of Multiple Targets using a Multi-Layer Perceptron\",\"authors\":\"Jonas Fuchs, R. Weigel, M. Gardill\",\"doi\":\"10.1109/ICMIM.2019.8726554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An alternative approach to high-resolution direction-of-arrival estimation in the context of automotive FMCW signal processing is shown by training a neural network with simulation as well as experimental data to estimate the mean and distance of the azimuth angles from two targets. Testing results are post-processed to obtain the estimated azimuth angles which can be validated afterwards. The performance of the proposed neural network is then compared with a reference implementation of a maximum likelihood estimator. Final evaluations show super-resolution like performance with significantly reduced computation time, which is expected to have an impact on future multi-dimensional high-resolution DoA estimation.\",\"PeriodicalId\":225972,\"journal\":{\"name\":\"2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIM.2019.8726554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIM.2019.8726554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-Snapshot Direction-of-Arrival Estimation of Multiple Targets using a Multi-Layer Perceptron
An alternative approach to high-resolution direction-of-arrival estimation in the context of automotive FMCW signal processing is shown by training a neural network with simulation as well as experimental data to estimate the mean and distance of the azimuth angles from two targets. Testing results are post-processed to obtain the estimated azimuth angles which can be validated afterwards. The performance of the proposed neural network is then compared with a reference implementation of a maximum likelihood estimator. Final evaluations show super-resolution like performance with significantly reduced computation time, which is expected to have an impact on future multi-dimensional high-resolution DoA estimation.