弱监督乳腺病变动态增强磁共振成像检测

Chuanling Wei, S. Nie
{"title":"弱监督乳腺病变动态增强磁共振成像检测","authors":"Chuanling Wei, S. Nie","doi":"10.1109/icsai53574.2021.9664072","DOIUrl":null,"url":null,"abstract":"Breast cancer detection is a key part of breast computer-aided detection system, which has its significance for assisting doctors to diagnose breast cancer. The objective is to develop a weakly supervised approach via deep learning for breast cancer detection in dynamic contrast enhancement magnetic resonance imaging, and to reduce the cost of manually marking the database and doctors' workload, improves breast cancer detection rates. In our ablation experiments, the proposed structure is effective. The performance of classification network showed 94.67% accuracy, the weakly supervised detection showed the IoU of 0.803.","PeriodicalId":131284,"journal":{"name":"2021 7th International Conference on Systems and Informatics (ICSAI)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weakly Supervised Breast Lesions Detection in Dynamic Contrast Enhancement Magnetic Resonance Imaging\",\"authors\":\"Chuanling Wei, S. Nie\",\"doi\":\"10.1109/icsai53574.2021.9664072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer detection is a key part of breast computer-aided detection system, which has its significance for assisting doctors to diagnose breast cancer. The objective is to develop a weakly supervised approach via deep learning for breast cancer detection in dynamic contrast enhancement magnetic resonance imaging, and to reduce the cost of manually marking the database and doctors' workload, improves breast cancer detection rates. In our ablation experiments, the proposed structure is effective. The performance of classification network showed 94.67% accuracy, the weakly supervised detection showed the IoU of 0.803.\",\"PeriodicalId\":131284,\"journal\":{\"name\":\"2021 7th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icsai53574.2021.9664072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icsai53574.2021.9664072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

乳腺癌检测是乳腺计算机辅助检测系统的关键部分,对辅助医生诊断乳腺癌具有重要意义。目的是通过深度学习开发一种弱监督的方法,用于动态增强磁共振成像中的乳腺癌检测,并减少人工标记数据库的成本和医生的工作量,提高乳腺癌的检出率。在我们的烧蚀实验中,该结构是有效的。分类网络的准确率为94.67%,弱监督检测的IoU为0.803。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly Supervised Breast Lesions Detection in Dynamic Contrast Enhancement Magnetic Resonance Imaging
Breast cancer detection is a key part of breast computer-aided detection system, which has its significance for assisting doctors to diagnose breast cancer. The objective is to develop a weakly supervised approach via deep learning for breast cancer detection in dynamic contrast enhancement magnetic resonance imaging, and to reduce the cost of manually marking the database and doctors' workload, improves breast cancer detection rates. In our ablation experiments, the proposed structure is effective. The performance of classification network showed 94.67% accuracy, the weakly supervised detection showed the IoU of 0.803.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信