前臂假体控制问题中肌电信号特征信息量的估计

M. V. Markova, D. O. Shestopalov, A. Nikolaev
{"title":"前臂假体控制问题中肌电信号特征信息量的估计","authors":"M. V. Markova, D. O. Shestopalov, A. Nikolaev","doi":"10.1109/USBEREIT.2018.8384548","DOIUrl":null,"url":null,"abstract":"In this study estimation of features informativeness of the EMG signal in the problem of forearm prosthesis controlling is considered. Logistic regression is used to classify six hand movements: grasping, opening, flexion, pronation and supination using fourteen time domain features. To evaluate the importance of features linear regression coefficients are used. Most informative features are shown.","PeriodicalId":176222,"journal":{"name":"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Estimation of features informativeness of the EMG signal in the problem of forearm prosthesis controlling\",\"authors\":\"M. V. Markova, D. O. Shestopalov, A. Nikolaev\",\"doi\":\"10.1109/USBEREIT.2018.8384548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study estimation of features informativeness of the EMG signal in the problem of forearm prosthesis controlling is considered. Logistic regression is used to classify six hand movements: grasping, opening, flexion, pronation and supination using fourteen time domain features. To evaluate the importance of features linear regression coefficients are used. Most informative features are shown.\",\"PeriodicalId\":176222,\"journal\":{\"name\":\"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/USBEREIT.2018.8384548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USBEREIT.2018.8384548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

研究了前臂假体控制问题中肌电信号特征信息量的估计问题。利用14个时域特征,采用Logistic回归对抓握、张开、屈曲、旋前和旋后六种手部动作进行分类。为了评估特征的重要性,使用线性回归系数。显示了大多数信息丰富的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of features informativeness of the EMG signal in the problem of forearm prosthesis controlling
In this study estimation of features informativeness of the EMG signal in the problem of forearm prosthesis controlling is considered. Logistic regression is used to classify six hand movements: grasping, opening, flexion, pronation and supination using fourteen time domain features. To evaluate the importance of features linear regression coefficients are used. Most informative features are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信