基于条件随机场和随机森林的城市激光雷达数据分类

J. Niemeyer, F. Rottensteiner, U. Soergel
{"title":"基于条件随机场和随机森林的城市激光雷达数据分类","authors":"J. Niemeyer, F. Rottensteiner, U. Soergel","doi":"10.1109/JURSE.2013.6550685","DOIUrl":null,"url":null,"abstract":"In this work we address the task of contextual classification of an airborne LiDAR point cloud. For that purpose, we integrate a Random Forest classifier into a Conditional Random Field (CRF) framework. A CRF has been shown to deliver good results discerning multiple classes. It is a flexible approach for obtaining a reliable classification even in complex urban scenes. The incorporation of multi-scale features improves the results further. Based on the classification results, 2D building and tree objects are generated and evaluated by the benchmark of ISPRS WG III/4.","PeriodicalId":370707,"journal":{"name":"Joint Urban Remote Sensing Event 2013","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Classification of urban LiDAR data using conditional random field and random forests\",\"authors\":\"J. Niemeyer, F. Rottensteiner, U. Soergel\",\"doi\":\"10.1109/JURSE.2013.6550685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we address the task of contextual classification of an airborne LiDAR point cloud. For that purpose, we integrate a Random Forest classifier into a Conditional Random Field (CRF) framework. A CRF has been shown to deliver good results discerning multiple classes. It is a flexible approach for obtaining a reliable classification even in complex urban scenes. The incorporation of multi-scale features improves the results further. Based on the classification results, 2D building and tree objects are generated and evaluated by the benchmark of ISPRS WG III/4.\",\"PeriodicalId\":370707,\"journal\":{\"name\":\"Joint Urban Remote Sensing Event 2013\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joint Urban Remote Sensing Event 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JURSE.2013.6550685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Urban Remote Sensing Event 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JURSE.2013.6550685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

在这项工作中,我们解决了机载激光雷达点云的上下文分类任务。为此,我们将随机森林分类器集成到条件随机场(CRF)框架中。CRF已被证明可以提供识别多个类别的良好结果。它是一种灵活的方法,即使在复杂的城市场景中也能获得可靠的分类。多尺度特征的结合进一步改善了结果。基于分类结果,生成二维建筑和树木目标,并根据ISPRS WG III/4基准进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of urban LiDAR data using conditional random field and random forests
In this work we address the task of contextual classification of an airborne LiDAR point cloud. For that purpose, we integrate a Random Forest classifier into a Conditional Random Field (CRF) framework. A CRF has been shown to deliver good results discerning multiple classes. It is a flexible approach for obtaining a reliable classification even in complex urban scenes. The incorporation of multi-scale features improves the results further. Based on the classification results, 2D building and tree objects are generated and evaluated by the benchmark of ISPRS WG III/4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信