Iris Tal, Yael Bekerman, Avi Mor, Lior Knafo, J. Alon, S. Avidan
{"title":"nldnet++:一个基于物理的单图像去雾网络","authors":"Iris Tal, Yael Bekerman, Avi Mor, Lior Knafo, J. Alon, S. Avidan","doi":"10.1109/ICCP48838.2020.9105249","DOIUrl":null,"url":null,"abstract":"Deep learning methods for image dehazing achieve impressive results. Yet, the task of collecting ground truth hazy/dehazed image pairs to train the network is cumbersome. We propose to use Non-Local Image Dehazing (NLD), an existing physics based technique, to provide the dehazed image required to training a network. Upon close inspection, we find that NLD suffers from several shortcomings and propose novel extensions to improve it. The new method, termed NLD++, consists of 1) denoising the input image as pre-processing step to avoid noise amplification, 2) introducing a constrained optimization that respects physical constraints. NLD++ produces superior results to NLD at the expense of increased computational cost. To offset that, we propose NLDNet++, a fully convolutional network that is trained on pairs of hazy images and images dehazed by NLD++. This eliminates the need of existing deep learning methods that require hazy/dehazed image pairs that are difficult to obtain. We evaluate the performance of NLDNet++ on standard data sets and find it to compare favorably with existing methods.","PeriodicalId":406823,"journal":{"name":"2020 IEEE International Conference on Computational Photography (ICCP)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"NLDNet++: A Physics Based Single Image Dehazing Network\",\"authors\":\"Iris Tal, Yael Bekerman, Avi Mor, Lior Knafo, J. Alon, S. Avidan\",\"doi\":\"10.1109/ICCP48838.2020.9105249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning methods for image dehazing achieve impressive results. Yet, the task of collecting ground truth hazy/dehazed image pairs to train the network is cumbersome. We propose to use Non-Local Image Dehazing (NLD), an existing physics based technique, to provide the dehazed image required to training a network. Upon close inspection, we find that NLD suffers from several shortcomings and propose novel extensions to improve it. The new method, termed NLD++, consists of 1) denoising the input image as pre-processing step to avoid noise amplification, 2) introducing a constrained optimization that respects physical constraints. NLD++ produces superior results to NLD at the expense of increased computational cost. To offset that, we propose NLDNet++, a fully convolutional network that is trained on pairs of hazy images and images dehazed by NLD++. This eliminates the need of existing deep learning methods that require hazy/dehazed image pairs that are difficult to obtain. We evaluate the performance of NLDNet++ on standard data sets and find it to compare favorably with existing methods.\",\"PeriodicalId\":406823,\"journal\":{\"name\":\"2020 IEEE International Conference on Computational Photography (ICCP)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Computational Photography (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCP48838.2020.9105249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Computational Photography (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP48838.2020.9105249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NLDNet++: A Physics Based Single Image Dehazing Network
Deep learning methods for image dehazing achieve impressive results. Yet, the task of collecting ground truth hazy/dehazed image pairs to train the network is cumbersome. We propose to use Non-Local Image Dehazing (NLD), an existing physics based technique, to provide the dehazed image required to training a network. Upon close inspection, we find that NLD suffers from several shortcomings and propose novel extensions to improve it. The new method, termed NLD++, consists of 1) denoising the input image as pre-processing step to avoid noise amplification, 2) introducing a constrained optimization that respects physical constraints. NLD++ produces superior results to NLD at the expense of increased computational cost. To offset that, we propose NLDNet++, a fully convolutional network that is trained on pairs of hazy images and images dehazed by NLD++. This eliminates the need of existing deep learning methods that require hazy/dehazed image pairs that are difficult to obtain. We evaluate the performance of NLDNet++ on standard data sets and find it to compare favorably with existing methods.