Shuyue Hu, Chin-wing Leung, Ho-fung Leung, Jiamou Liu
{"title":"基于追踪的学习:多边互动产生的有效约定","authors":"Shuyue Hu, Chin-wing Leung, Ho-fung Leung, Jiamou Liu","doi":"10.1145/3502199","DOIUrl":null,"url":null,"abstract":"The concept of conventions has attracted much attention in the multi-agent system research. In this article, we study the emergence of conventions from repeated n-player coordination games. Distributed agents learn their policies independently and are capable of observing their neighbours in a network topology. We distinguish two types of information representation about the observations: gist trace and verbatim trace. We conjecture that learning based on the gist trace, which overlooks the details and focuses only on the general choice of action of a neighbourhood, should achieve efficient convention emergence. To this end, a novel learning method that makes use of the gist trace is proposed. The experimental results confirm that the proposed method establishes conventions much faster than the state-of-the-art learning methods across diverse settings of multi-agent systems. In particular, the use of gist trace derived at a low level of abstraction further improves the efficiency of convention emergence.","PeriodicalId":377078,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gist Trace-based Learning: Efficient Convention Emergence from Multilateral Interactions\",\"authors\":\"Shuyue Hu, Chin-wing Leung, Ho-fung Leung, Jiamou Liu\",\"doi\":\"10.1145/3502199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of conventions has attracted much attention in the multi-agent system research. In this article, we study the emergence of conventions from repeated n-player coordination games. Distributed agents learn their policies independently and are capable of observing their neighbours in a network topology. We distinguish two types of information representation about the observations: gist trace and verbatim trace. We conjecture that learning based on the gist trace, which overlooks the details and focuses only on the general choice of action of a neighbourhood, should achieve efficient convention emergence. To this end, a novel learning method that makes use of the gist trace is proposed. The experimental results confirm that the proposed method establishes conventions much faster than the state-of-the-art learning methods across diverse settings of multi-agent systems. In particular, the use of gist trace derived at a low level of abstraction further improves the efficiency of convention emergence.\",\"PeriodicalId\":377078,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems (TAAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3502199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems (TAAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3502199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gist Trace-based Learning: Efficient Convention Emergence from Multilateral Interactions
The concept of conventions has attracted much attention in the multi-agent system research. In this article, we study the emergence of conventions from repeated n-player coordination games. Distributed agents learn their policies independently and are capable of observing their neighbours in a network topology. We distinguish two types of information representation about the observations: gist trace and verbatim trace. We conjecture that learning based on the gist trace, which overlooks the details and focuses only on the general choice of action of a neighbourhood, should achieve efficient convention emergence. To this end, a novel learning method that makes use of the gist trace is proposed. The experimental results confirm that the proposed method establishes conventions much faster than the state-of-the-art learning methods across diverse settings of multi-agent systems. In particular, the use of gist trace derived at a low level of abstraction further improves the efficiency of convention emergence.