电力系统的收缩区分析

Mutlu Yilmaz, F. Bayat
{"title":"电力系统的收缩区分析","authors":"Mutlu Yilmaz, F. Bayat","doi":"10.1109/TPEC.2019.8662183","DOIUrl":null,"url":null,"abstract":"This work is fully devoted to contraction theory-based analysis of stability. We discuss the contraction region and contraction metric that define for the power system model. The classical model of power system is contracting with respect to the proposed metric. The stability of nonlinear power system is proved by studying the properties of its Jacobian matrix. We demonstrate the necessary conditions for the existence of contraction for underlying the proposed power system model. The results of our simulations show that the contraction region exists. All eigenvalues of the Jacobian matrix are simulated to capture the behavior of a two-machine power system.","PeriodicalId":424038,"journal":{"name":"2019 IEEE Texas Power and Energy Conference (TPEC)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Contraction Region Analysis for Power Systems\",\"authors\":\"Mutlu Yilmaz, F. Bayat\",\"doi\":\"10.1109/TPEC.2019.8662183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is fully devoted to contraction theory-based analysis of stability. We discuss the contraction region and contraction metric that define for the power system model. The classical model of power system is contracting with respect to the proposed metric. The stability of nonlinear power system is proved by studying the properties of its Jacobian matrix. We demonstrate the necessary conditions for the existence of contraction for underlying the proposed power system model. The results of our simulations show that the contraction region exists. All eigenvalues of the Jacobian matrix are simulated to capture the behavior of a two-machine power system.\",\"PeriodicalId\":424038,\"journal\":{\"name\":\"2019 IEEE Texas Power and Energy Conference (TPEC)\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Texas Power and Energy Conference (TPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPEC.2019.8662183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC.2019.8662183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作完全致力于基于收缩理论的稳定性分析。讨论了为电力系统模型定义的收缩区域和收缩度量。电力系统的经典模型相对于所提出的度量是收缩的。通过研究电力系统雅可比矩阵的性质,证明了非线性电力系统的稳定性。我们证明了所提出的电力系统模型存在收缩的必要条件。模拟结果表明,收缩区是存在的。模拟了雅可比矩阵的所有特征值,以捕获双机电力系统的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contraction Region Analysis for Power Systems
This work is fully devoted to contraction theory-based analysis of stability. We discuss the contraction region and contraction metric that define for the power system model. The classical model of power system is contracting with respect to the proposed metric. The stability of nonlinear power system is proved by studying the properties of its Jacobian matrix. We demonstrate the necessary conditions for the existence of contraction for underlying the proposed power system model. The results of our simulations show that the contraction region exists. All eigenvalues of the Jacobian matrix are simulated to capture the behavior of a two-machine power system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信