M. Habibi, Ramin Hashemi, H. Beyranvand, Ali Emami, M. Hashemi, Davood Ranjbar Rafie
{"title":"比较SMF和NZ-DSF光纤的非线性对光相干传输系统性能的影响","authors":"M. Habibi, Ramin Hashemi, H. Beyranvand, Ali Emami, M. Hashemi, Davood Ranjbar Rafie","doi":"10.1109/MMWATT.2018.8661227","DOIUrl":null,"url":null,"abstract":"In this paper, we compare the nonlinearity effects of single mode fiber (SMF) and non-zero dispersion shifted fiber (NZ-DSF) on the performance of optical coherent transmission systems. We estimate the nonlinearity effects of fiber, referred to as nonlinear interference noise (NLIN), by using the so-called enhanced Gaussian noise (EGN) model, and compute signal to noise ration (SNR) of optical coherent transmission system by considering NLIN and optical amplifier noise, referred to as amplified spontaneous emission (ASE) noise. By considering EGN model we optimize the lunch power of optical coherent systems considering SMF and NZ-DSF. Finally, a 100Gbps optical coherent transmission system is simulated and its results are compared with analytical results obtained based on the EGN model. The closeness between analytical and simulation results reveal the accuracy of the EGN model and the power optimization formulations.","PeriodicalId":338853,"journal":{"name":"2018 Fifth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT)","volume":"285 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Nonlinearity Effects of SMF and NZ-DSF fibers on the Performance of Optical Coherent Transmission Systems\",\"authors\":\"M. Habibi, Ramin Hashemi, H. Beyranvand, Ali Emami, M. Hashemi, Davood Ranjbar Rafie\",\"doi\":\"10.1109/MMWATT.2018.8661227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we compare the nonlinearity effects of single mode fiber (SMF) and non-zero dispersion shifted fiber (NZ-DSF) on the performance of optical coherent transmission systems. We estimate the nonlinearity effects of fiber, referred to as nonlinear interference noise (NLIN), by using the so-called enhanced Gaussian noise (EGN) model, and compute signal to noise ration (SNR) of optical coherent transmission system by considering NLIN and optical amplifier noise, referred to as amplified spontaneous emission (ASE) noise. By considering EGN model we optimize the lunch power of optical coherent systems considering SMF and NZ-DSF. Finally, a 100Gbps optical coherent transmission system is simulated and its results are compared with analytical results obtained based on the EGN model. The closeness between analytical and simulation results reveal the accuracy of the EGN model and the power optimization formulations.\",\"PeriodicalId\":338853,\"journal\":{\"name\":\"2018 Fifth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT)\",\"volume\":\"285 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Fifth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMWATT.2018.8661227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Fifth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMWATT.2018.8661227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing Nonlinearity Effects of SMF and NZ-DSF fibers on the Performance of Optical Coherent Transmission Systems
In this paper, we compare the nonlinearity effects of single mode fiber (SMF) and non-zero dispersion shifted fiber (NZ-DSF) on the performance of optical coherent transmission systems. We estimate the nonlinearity effects of fiber, referred to as nonlinear interference noise (NLIN), by using the so-called enhanced Gaussian noise (EGN) model, and compute signal to noise ration (SNR) of optical coherent transmission system by considering NLIN and optical amplifier noise, referred to as amplified spontaneous emission (ASE) noise. By considering EGN model we optimize the lunch power of optical coherent systems considering SMF and NZ-DSF. Finally, a 100Gbps optical coherent transmission system is simulated and its results are compared with analytical results obtained based on the EGN model. The closeness between analytical and simulation results reveal the accuracy of the EGN model and the power optimization formulations.