Chiradeep Mukherjee, Saradindu Panda, A. Mukhopadhyay, B. Maji
{"title":"用分层T逻辑约简技术实现可逆门的QCA","authors":"Chiradeep Mukherjee, Saradindu Panda, A. Mukhopadhyay, B. Maji","doi":"10.1109/DEVIC.2019.8783852","DOIUrl":null,"url":null,"abstract":"Quantum-dot cellular automata (QCA) becomes a promising model of computation as it possesses extreme-high packing density, ultra-high speed and low power dissipation for various nanoscale computing architectures. In this work, QCA based designs of Feynman, Toffoli, Fredkin and Peres gates are presented. These elementary gates are realized by utilizing layered T logic reduction technique. The QCA designs are evaluated in terms of QCA design metrics like the number of quantum cells, area, and delay. The analysis shows significant improvements over existing models in terms of QCA design metrics. As a result, the proposed layered T based QCA layouts of elementary reversible gates become an excellent candidate for developing multilevel reversible circuits.","PeriodicalId":294095,"journal":{"name":"2019 Devices for Integrated Circuit (DevIC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique\",\"authors\":\"Chiradeep Mukherjee, Saradindu Panda, A. Mukhopadhyay, B. Maji\",\"doi\":\"10.1109/DEVIC.2019.8783852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum-dot cellular automata (QCA) becomes a promising model of computation as it possesses extreme-high packing density, ultra-high speed and low power dissipation for various nanoscale computing architectures. In this work, QCA based designs of Feynman, Toffoli, Fredkin and Peres gates are presented. These elementary gates are realized by utilizing layered T logic reduction technique. The QCA designs are evaluated in terms of QCA design metrics like the number of quantum cells, area, and delay. The analysis shows significant improvements over existing models in terms of QCA design metrics. As a result, the proposed layered T based QCA layouts of elementary reversible gates become an excellent candidate for developing multilevel reversible circuits.\",\"PeriodicalId\":294095,\"journal\":{\"name\":\"2019 Devices for Integrated Circuit (DevIC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Devices for Integrated Circuit (DevIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVIC.2019.8783852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Devices for Integrated Circuit (DevIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVIC.2019.8783852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
QCA Realization of Reversible Gates Using Layered T Logic Reduction Technique
Quantum-dot cellular automata (QCA) becomes a promising model of computation as it possesses extreme-high packing density, ultra-high speed and low power dissipation for various nanoscale computing architectures. In this work, QCA based designs of Feynman, Toffoli, Fredkin and Peres gates are presented. These elementary gates are realized by utilizing layered T logic reduction technique. The QCA designs are evaluated in terms of QCA design metrics like the number of quantum cells, area, and delay. The analysis shows significant improvements over existing models in terms of QCA design metrics. As a result, the proposed layered T based QCA layouts of elementary reversible gates become an excellent candidate for developing multilevel reversible circuits.