禁忌自适应人工蜂群元启发式图像分割

{"title":"禁忌自适应人工蜂群元启发式图像分割","authors":"","doi":"10.4018/ijaec.302015","DOIUrl":null,"url":null,"abstract":"This paper proposes to enhance the Artificial Bee Colony (ABC) metaheuristic with a Tabu adaptive memory to optimize the multilevel thresholding for Image Segmentation. This novel method is named Tabu-Adaptive Artificial Bee Colony (TA-ABC). To find the optimal thresholds, two novel versions of the proposed technique named TA-ABC-BCV and TA-ABC-ET are developed using respectively the thresholding functions namely the Between-Class Variance (BCV) and the Entropy Thresholding (ET). To prove the robustness and performance of the proposed methods TA-ABC-BCV and TA-ABC-ET, several benchmark images taken from the USC-SIPI Image Database are used. The experimental results show that TA-ABC-BCV and TA-ABC-ET outperform other existing optimization algorithms in the literature. Besides, compared to TA-ABC-ET and other methods from the literature all experimental results prove the superiority of TA-ABC-BCV.","PeriodicalId":251628,"journal":{"name":"International Journal of Applied Evolutionary Computation","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TABU-ADAPTIVE ARTIFICIAL BEE COLONY METAHEURISTIC FOR IMAGE SEGMENTATION\",\"authors\":\"\",\"doi\":\"10.4018/ijaec.302015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes to enhance the Artificial Bee Colony (ABC) metaheuristic with a Tabu adaptive memory to optimize the multilevel thresholding for Image Segmentation. This novel method is named Tabu-Adaptive Artificial Bee Colony (TA-ABC). To find the optimal thresholds, two novel versions of the proposed technique named TA-ABC-BCV and TA-ABC-ET are developed using respectively the thresholding functions namely the Between-Class Variance (BCV) and the Entropy Thresholding (ET). To prove the robustness and performance of the proposed methods TA-ABC-BCV and TA-ABC-ET, several benchmark images taken from the USC-SIPI Image Database are used. The experimental results show that TA-ABC-BCV and TA-ABC-ET outperform other existing optimization algorithms in the literature. Besides, compared to TA-ABC-ET and other methods from the literature all experimental results prove the superiority of TA-ABC-BCV.\",\"PeriodicalId\":251628,\"journal\":{\"name\":\"International Journal of Applied Evolutionary Computation\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijaec.302015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijaec.302015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出利用禁忌自适应记忆对人工蜂群(ABC)元启发式算法进行改进,以优化图像分割的多级阈值。这种新方法被命名为禁忌自适应人工蜂群(TA-ABC)。为了找到最优阈值,本文分别利用类间方差(BCV)和熵阈值(ET)阈值函数,开发了两种新版本的算法,分别命名为TA-ABC-BCV和TA-ABC-ET。为了证明TA-ABC-BCV和TA-ABC-ET方法的鲁棒性和性能,使用了来自USC-SIPI图像数据库的几张基准图像。实验结果表明,TA-ABC-BCV和TA-ABC-ET优于文献中已有的其他优化算法。此外,与TA-ABC-ET等文献中的方法相比,实验结果均证明了TA-ABC-BCV的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TABU-ADAPTIVE ARTIFICIAL BEE COLONY METAHEURISTIC FOR IMAGE SEGMENTATION
This paper proposes to enhance the Artificial Bee Colony (ABC) metaheuristic with a Tabu adaptive memory to optimize the multilevel thresholding for Image Segmentation. This novel method is named Tabu-Adaptive Artificial Bee Colony (TA-ABC). To find the optimal thresholds, two novel versions of the proposed technique named TA-ABC-BCV and TA-ABC-ET are developed using respectively the thresholding functions namely the Between-Class Variance (BCV) and the Entropy Thresholding (ET). To prove the robustness and performance of the proposed methods TA-ABC-BCV and TA-ABC-ET, several benchmark images taken from the USC-SIPI Image Database are used. The experimental results show that TA-ABC-BCV and TA-ABC-ET outperform other existing optimization algorithms in the literature. Besides, compared to TA-ABC-ET and other methods from the literature all experimental results prove the superiority of TA-ABC-BCV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信