关于星型操作和半星型操作的说明

Ryuki Matsuda, I. Sato
{"title":"关于星型操作和半星型操作的说明","authors":"Ryuki Matsuda, I. Sato","doi":"10.5036/BFSIU1968.28.5","DOIUrl":null,"url":null,"abstract":"A subsemigroup ⊃≠{0} of a torsion-free abelian (additive) group is called a grading monoid. First we show that [He] holds for a grading monoid S. Especially every ideal of an integrally closed grading monoid S is divisorial if and only if S is a valuation semigroup with the principal maximal ideal. Next we discuss whether [MSu, Proposition 8] holds for n=4, namely, an integrally closed domain D of dimension 4 is or is not a valuation ring if and only if 5〓|Σ'(D)|〓9, where Σ'(D) is the set of semistar-operations on D. Next. we study semigroup version of [AA2], [Q1] and [Q2]. Next we study the question of [A]. Finally we show that every cancellation ideal of a grading monoid is","PeriodicalId":141145,"journal":{"name":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Note on star-operations and semistar-operations\",\"authors\":\"Ryuki Matsuda, I. Sato\",\"doi\":\"10.5036/BFSIU1968.28.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subsemigroup ⊃≠{0} of a torsion-free abelian (additive) group is called a grading monoid. First we show that [He] holds for a grading monoid S. Especially every ideal of an integrally closed grading monoid S is divisorial if and only if S is a valuation semigroup with the principal maximal ideal. Next we discuss whether [MSu, Proposition 8] holds for n=4, namely, an integrally closed domain D of dimension 4 is or is not a valuation ring if and only if 5〓|Σ'(D)|〓9, where Σ'(D) is the set of semistar-operations on D. Next. we study semigroup version of [AA2], [Q1] and [Q2]. Next we study the question of [A]. Finally we show that every cancellation ideal of a grading monoid is\",\"PeriodicalId\":141145,\"journal\":{\"name\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/BFSIU1968.28.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/BFSIU1968.28.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

无扭阿贝尔(加性)群的子半群、≠{0}称为分级单群。首先证明了[He]对分级单群S成立,特别是当且仅当S是具有最大理想的估值半群时,整闭分级单群S的每一个理想都是可分的。接下来,我们讨论[MSu,命题8]是否对n=4成立,即4维的整闭域D当且仅当5〓|Σ'(D)|〓9是或不是估值环,其中Σ'(D)是D上的半星运算集。我们研究了[AA2], [Q1]和[Q2]的半群版本。接下来我们研究[A]的问题。最后我们证明了一个分级单群的每一个消去理想都是
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on star-operations and semistar-operations
A subsemigroup ⊃≠{0} of a torsion-free abelian (additive) group is called a grading monoid. First we show that [He] holds for a grading monoid S. Especially every ideal of an integrally closed grading monoid S is divisorial if and only if S is a valuation semigroup with the principal maximal ideal. Next we discuss whether [MSu, Proposition 8] holds for n=4, namely, an integrally closed domain D of dimension 4 is or is not a valuation ring if and only if 5〓|Σ'(D)|〓9, where Σ'(D) is the set of semistar-operations on D. Next. we study semigroup version of [AA2], [Q1] and [Q2]. Next we study the question of [A]. Finally we show that every cancellation ideal of a grading monoid is
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信