基于图像和标题的LSTM语言模型自适应多媒体自动语音识别

Yasufumi Moriya, G. Jones
{"title":"基于图像和标题的LSTM语言模型自适应多媒体自动语音识别","authors":"Yasufumi Moriya, G. Jones","doi":"10.1109/SLT.2018.8639551","DOIUrl":null,"url":null,"abstract":"Transcription of multimedia data sources is often a challenging automatic speech recognition (ASR) task. The incorporation of visual features as additional contextual information as a means to improve ASR for this data has recently drawn attention from researchers. Our investigation extends existing ASR methods by using images and video titles to adapt a recurrent neural network (RNN) language model with a long-short term memory (LSTM) network. Our language model is tested on transcription of an existing corpus of instruction videos and on a new corpus consisting of lecture videos. Consistent reduction in perplexity by 5–10 is observed on both datasets. When the non-adapted model is combined with the image adaptation and video title adaptation models for n-best ASR hypotheses re-ranking, additionally the word error rate (WER) is decreased by around 0.5% on both datasets. By analysing the output word probabilities of the model, it is found that both image adaptation and video title adaptation give the model more confidence in the choice of contextually correct informative words","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"LSTM Language Model Adaptation with Images and Titles for Multimedia Automatic Speech Recognition\",\"authors\":\"Yasufumi Moriya, G. Jones\",\"doi\":\"10.1109/SLT.2018.8639551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transcription of multimedia data sources is often a challenging automatic speech recognition (ASR) task. The incorporation of visual features as additional contextual information as a means to improve ASR for this data has recently drawn attention from researchers. Our investigation extends existing ASR methods by using images and video titles to adapt a recurrent neural network (RNN) language model with a long-short term memory (LSTM) network. Our language model is tested on transcription of an existing corpus of instruction videos and on a new corpus consisting of lecture videos. Consistent reduction in perplexity by 5–10 is observed on both datasets. When the non-adapted model is combined with the image adaptation and video title adaptation models for n-best ASR hypotheses re-ranking, additionally the word error rate (WER) is decreased by around 0.5% on both datasets. By analysing the output word probabilities of the model, it is found that both image adaptation and video title adaptation give the model more confidence in the choice of contextually correct informative words\",\"PeriodicalId\":377307,\"journal\":{\"name\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2018.8639551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

多媒体数据源的转录通常是一项具有挑战性的自动语音识别(ASR)任务。结合视觉特征作为额外的上下文信息作为一种手段,以提高这些数据的ASR最近引起了研究人员的注意。我们的研究扩展了现有的ASR方法,通过使用图像和视频标题来适应具有长短期记忆(LSTM)网络的递归神经网络(RNN)语言模型。我们的语言模型在现有的教学视频语料库和由讲座视频组成的新语料库上进行了转录测试。在两个数据集上观察到困惑度一致减少5-10。当将非自适应模型与图像自适应模型和视频标题自适应模型相结合进行n-best ASR假设重新排序时,两个数据集的单词错误率(WER)都降低了约0.5%。通过分析模型的输出词概率,发现图像自适应和视频标题自适应都使模型在选择上下文正确的信息词时更有信心
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LSTM Language Model Adaptation with Images and Titles for Multimedia Automatic Speech Recognition
Transcription of multimedia data sources is often a challenging automatic speech recognition (ASR) task. The incorporation of visual features as additional contextual information as a means to improve ASR for this data has recently drawn attention from researchers. Our investigation extends existing ASR methods by using images and video titles to adapt a recurrent neural network (RNN) language model with a long-short term memory (LSTM) network. Our language model is tested on transcription of an existing corpus of instruction videos and on a new corpus consisting of lecture videos. Consistent reduction in perplexity by 5–10 is observed on both datasets. When the non-adapted model is combined with the image adaptation and video title adaptation models for n-best ASR hypotheses re-ranking, additionally the word error rate (WER) is decreased by around 0.5% on both datasets. By analysing the output word probabilities of the model, it is found that both image adaptation and video title adaptation give the model more confidence in the choice of contextually correct informative words
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信