从触摸交互数据预测ADHD风险

Philipp Mock, Maike Tibus, A. Ehlis, H. Baayen, Peter Gerjets
{"title":"从触摸交互数据预测ADHD风险","authors":"Philipp Mock, Maike Tibus, A. Ehlis, H. Baayen, Peter Gerjets","doi":"10.1145/3242969.3242986","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for automatic prediction of risk of ADHD in schoolchildren based on touch interaction data. We performed a study with 129 fourth-grade students solving math problems on a multiple-choice interface to obtain a large dataset of touch trajectories. Using Support Vector Machines, we analyzed the predictive power of such data for ADHD scales. For regression of overall ADHD scores, we achieve a mean squared error of 0.0962 on a four-point scale (R² = 0.5667). Classification accuracy for increased ADHD risk (upper vs. lower third of collected scores) is 91.1%.","PeriodicalId":308751,"journal":{"name":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Predicting ADHD Risk from Touch Interaction Data\",\"authors\":\"Philipp Mock, Maike Tibus, A. Ehlis, H. Baayen, Peter Gerjets\",\"doi\":\"10.1145/3242969.3242986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach for automatic prediction of risk of ADHD in schoolchildren based on touch interaction data. We performed a study with 129 fourth-grade students solving math problems on a multiple-choice interface to obtain a large dataset of touch trajectories. Using Support Vector Machines, we analyzed the predictive power of such data for ADHD scales. For regression of overall ADHD scores, we achieve a mean squared error of 0.0962 on a four-point scale (R² = 0.5667). Classification accuracy for increased ADHD risk (upper vs. lower third of collected scores) is 91.1%.\",\"PeriodicalId\":308751,\"journal\":{\"name\":\"Proceedings of the 20th ACM International Conference on Multimodal Interaction\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3242969.3242986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242969.3242986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种基于触摸交互数据的学童ADHD风险自动预测方法。我们对129名四年级学生进行了一项研究,他们在多项选择界面上解决数学问题,以获得大型触摸轨迹数据集。使用支持向量机,我们分析了这些数据对ADHD量表的预测能力。对于总体ADHD评分的回归,我们在四分制上实现了0.0962的均方误差(R²= 0.5667)。ADHD风险增加的分类准确率(收集得分的上三分之一vs下三分之一)为91.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting ADHD Risk from Touch Interaction Data
This paper presents a novel approach for automatic prediction of risk of ADHD in schoolchildren based on touch interaction data. We performed a study with 129 fourth-grade students solving math problems on a multiple-choice interface to obtain a large dataset of touch trajectories. Using Support Vector Machines, we analyzed the predictive power of such data for ADHD scales. For regression of overall ADHD scores, we achieve a mean squared error of 0.0962 on a four-point scale (R² = 0.5667). Classification accuracy for increased ADHD risk (upper vs. lower third of collected scores) is 91.1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信