多尺度Nakagami参数成像改善肝脏肿瘤定位

Omar Sultan Al-Kadi
{"title":"多尺度Nakagami参数成像改善肝脏肿瘤定位","authors":"Omar Sultan Al-Kadi","doi":"10.1109/ICIP.2016.7532987","DOIUrl":null,"url":null,"abstract":"Effective ultrasound tissue characterization is usually hindered by complex tissue structures. The interlacing of speckle patterns complicates the correct estimation of backscatter distribution parameters. Nakagami parametric imaging based on localized shape parameter mapping can model different backscattering conditions. However, performance of the constructed Nakagami image depends on the sensitivity of the estimation method to the backscattered statistics and scale of analysis. Using a fixed focal region of interest in estimating the Nakagami parametric image would increase estimation variance. In this work, localized Nakagami parameters are estimated adaptively by means of maximum likelihood estimation on a multiscale basis. The varying size kernel integrates the goodness-of-fit of the backscattering distribution parameters at multiple scales for more stable parameter estimation. Results show improved quantitative visualization of changes in tissue specular reflections, suggesting a potential approach for improving tumor localization in low contrast ultrasound images.","PeriodicalId":147245,"journal":{"name":"International Conference on Information Photonics","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiscale Nakagami parametric imaging for improved liver tumor localization\",\"authors\":\"Omar Sultan Al-Kadi\",\"doi\":\"10.1109/ICIP.2016.7532987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective ultrasound tissue characterization is usually hindered by complex tissue structures. The interlacing of speckle patterns complicates the correct estimation of backscatter distribution parameters. Nakagami parametric imaging based on localized shape parameter mapping can model different backscattering conditions. However, performance of the constructed Nakagami image depends on the sensitivity of the estimation method to the backscattered statistics and scale of analysis. Using a fixed focal region of interest in estimating the Nakagami parametric image would increase estimation variance. In this work, localized Nakagami parameters are estimated adaptively by means of maximum likelihood estimation on a multiscale basis. The varying size kernel integrates the goodness-of-fit of the backscattering distribution parameters at multiple scales for more stable parameter estimation. Results show improved quantitative visualization of changes in tissue specular reflections, suggesting a potential approach for improving tumor localization in low contrast ultrasound images.\",\"PeriodicalId\":147245,\"journal\":{\"name\":\"International Conference on Information Photonics\",\"volume\":\"218 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

复杂的组织结构通常阻碍了有效的超声组织表征。散斑图案的交错使后向散射分布参数的正确估计复杂化。基于局部形状参数映射的Nakagami参数成像可以模拟不同的后向散射条件。然而,构建的Nakagami图像的性能取决于估计方法对后向散射统计量和分析规模的敏感性。使用固定焦点区域估计Nakagami参数图像会增加估计方差。本文采用多尺度的极大似然估计方法自适应地估计了局部Nakagami参数。变尺寸核融合了多尺度下后向散射分布参数的拟合优度,使参数估计更加稳定。结果显示,组织镜面反射变化的定量可视化得到了改善,提示了在低对比度超声图像中改善肿瘤定位的潜在方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale Nakagami parametric imaging for improved liver tumor localization
Effective ultrasound tissue characterization is usually hindered by complex tissue structures. The interlacing of speckle patterns complicates the correct estimation of backscatter distribution parameters. Nakagami parametric imaging based on localized shape parameter mapping can model different backscattering conditions. However, performance of the constructed Nakagami image depends on the sensitivity of the estimation method to the backscattered statistics and scale of analysis. Using a fixed focal region of interest in estimating the Nakagami parametric image would increase estimation variance. In this work, localized Nakagami parameters are estimated adaptively by means of maximum likelihood estimation on a multiscale basis. The varying size kernel integrates the goodness-of-fit of the backscattering distribution parameters at multiple scales for more stable parameter estimation. Results show improved quantitative visualization of changes in tissue specular reflections, suggesting a potential approach for improving tumor localization in low contrast ultrasound images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信