{"title":"扩展了一类Euler-Halley型方法的收敛半径","authors":"S. George, I. Argyros","doi":"10.33993/jnaat482-1115","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to extend the radius of convergence and improve the ratio of convergence for a certain class of Euler-Halley type methods with one parameter in a Banach space. These improvements over earlier works are obtained using the same functions as before but more precise information on the location of the iterates. Special cases and examples are also presented in this study.","PeriodicalId":287022,"journal":{"name":"Journal of Numerical Analysis and Approximation Theory","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending the radius of convergence for a class of Euler-Halley type methods\",\"authors\":\"S. George, I. Argyros\",\"doi\":\"10.33993/jnaat482-1115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to extend the radius of convergence and improve the ratio of convergence for a certain class of Euler-Halley type methods with one parameter in a Banach space. These improvements over earlier works are obtained using the same functions as before but more precise information on the location of the iterates. Special cases and examples are also presented in this study.\",\"PeriodicalId\":287022,\"journal\":{\"name\":\"Journal of Numerical Analysis and Approximation Theory\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Analysis and Approximation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33993/jnaat482-1115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Analysis and Approximation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33993/jnaat482-1115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extending the radius of convergence for a class of Euler-Halley type methods
The aim of this paper is to extend the radius of convergence and improve the ratio of convergence for a certain class of Euler-Halley type methods with one parameter in a Banach space. These improvements over earlier works are obtained using the same functions as before but more precise information on the location of the iterates. Special cases and examples are also presented in this study.