有界正态均值的估计:最不利先验离散性的另一种证明

S. Yagli, Alex Dytso, H. Poor
{"title":"有界正态均值的估计:最不利先验离散性的另一种证明","authors":"S. Yagli, Alex Dytso, H. Poor","doi":"10.1109/ITW44776.2019.8988927","DOIUrl":null,"url":null,"abstract":"This paper studies the classical Bayesian normal mean estimation problem where the estimand is assumed to be contained in a bounded set. It is known that the least favorable distribution for this mean estimation problem is discrete with finitely many mass points. This work offers an alternative proof utilizing the variational diminishing property of Gaussian kernels.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimation of Bounded Normal Mean: An Alternative Proof for the Discreteness of the Least Favorable Prior\",\"authors\":\"S. Yagli, Alex Dytso, H. Poor\",\"doi\":\"10.1109/ITW44776.2019.8988927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the classical Bayesian normal mean estimation problem where the estimand is assumed to be contained in a bounded set. It is known that the least favorable distribution for this mean estimation problem is discrete with finitely many mass points. This work offers an alternative proof utilizing the variational diminishing property of Gaussian kernels.\",\"PeriodicalId\":214379,\"journal\":{\"name\":\"2019 IEEE Information Theory Workshop (ITW)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW44776.2019.8988927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8988927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了经典贝叶斯正态均值估计问题,该问题假设估计包含在有界集合中。已知该均值估计问题的最不利分布是具有有限多个质量点的离散分布。这项工作提供了利用高斯核的变分递减性质的另一种证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Bounded Normal Mean: An Alternative Proof for the Discreteness of the Least Favorable Prior
This paper studies the classical Bayesian normal mean estimation problem where the estimand is assumed to be contained in a bounded set. It is known that the least favorable distribution for this mean estimation problem is discrete with finitely many mass points. This work offers an alternative proof utilizing the variational diminishing property of Gaussian kernels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信