{"title":"具有内置校准机构的电压控制晶体振荡器的设计权衡","authors":"Jose Pedro Cardoso, J. M. D. Silva","doi":"10.1109/IDT.2013.6727100","DOIUrl":null,"url":null,"abstract":"Timing is a critical issue in communication systems, especially for synchronous communications. These show a high dependence on the clock signal purity due to errors that can be introduced into the decision process. This paper addresses the design, on a 130nm CMOS process, of a Radiation Tolerant Voltage Controlled Quartz Crystal Oscillator (VCXO), including techniques to reduce the influence of radiation and noise on its performance. The VCXO is included on a PLL designed to work within High Energy Physics (HEP) experiments.","PeriodicalId":446826,"journal":{"name":"2013 8th IEEE Design and Test Symposium","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design tradeoffs for voltage controlled crystal oscillators with built-in calibration mechanisms\",\"authors\":\"Jose Pedro Cardoso, J. M. D. Silva\",\"doi\":\"10.1109/IDT.2013.6727100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Timing is a critical issue in communication systems, especially for synchronous communications. These show a high dependence on the clock signal purity due to errors that can be introduced into the decision process. This paper addresses the design, on a 130nm CMOS process, of a Radiation Tolerant Voltage Controlled Quartz Crystal Oscillator (VCXO), including techniques to reduce the influence of radiation and noise on its performance. The VCXO is included on a PLL designed to work within High Energy Physics (HEP) experiments.\",\"PeriodicalId\":446826,\"journal\":{\"name\":\"2013 8th IEEE Design and Test Symposium\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th IEEE Design and Test Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDT.2013.6727100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th IEEE Design and Test Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDT.2013.6727100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design tradeoffs for voltage controlled crystal oscillators with built-in calibration mechanisms
Timing is a critical issue in communication systems, especially for synchronous communications. These show a high dependence on the clock signal purity due to errors that can be introduced into the decision process. This paper addresses the design, on a 130nm CMOS process, of a Radiation Tolerant Voltage Controlled Quartz Crystal Oscillator (VCXO), including techniques to reduce the influence of radiation and noise on its performance. The VCXO is included on a PLL designed to work within High Energy Physics (HEP) experiments.