Crowdroid:基于行为的Android恶意软件检测系统

Iker Burguera, Urko Zurutuza, S. Nadjm-Tehrani
{"title":"Crowdroid:基于行为的Android恶意软件检测系统","authors":"Iker Burguera, Urko Zurutuza, S. Nadjm-Tehrani","doi":"10.1145/2046614.2046619","DOIUrl":null,"url":null,"abstract":"The sharp increase in the number of smartphones on the market, with the Android platform posed to becoming a market leader makes the need for malware analysis on this platform an urgent issue.\n In this paper we capitalize on earlier approaches for dynamic analysis of application behavior as a means for detecting malware in the Android platform. The detector is embedded in a overall framework for collection of traces from an unlimited number of real users based on crowdsourcing. Our framework has been demonstrated by analyzing the data collected in the central server using two types of data sets: those from artificial malware created for test purposes, and those from real malware found in the wild. The method is shown to be an effective means of isolating the malware and alerting the users of a downloaded malware. This shows the potential for avoiding the spreading of a detected malware to a larger community.","PeriodicalId":213305,"journal":{"name":"Security and Privacy in Smartphones and Mobile Devices","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1136","resultStr":"{\"title\":\"Crowdroid: behavior-based malware detection system for Android\",\"authors\":\"Iker Burguera, Urko Zurutuza, S. Nadjm-Tehrani\",\"doi\":\"10.1145/2046614.2046619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sharp increase in the number of smartphones on the market, with the Android platform posed to becoming a market leader makes the need for malware analysis on this platform an urgent issue.\\n In this paper we capitalize on earlier approaches for dynamic analysis of application behavior as a means for detecting malware in the Android platform. The detector is embedded in a overall framework for collection of traces from an unlimited number of real users based on crowdsourcing. Our framework has been demonstrated by analyzing the data collected in the central server using two types of data sets: those from artificial malware created for test purposes, and those from real malware found in the wild. The method is shown to be an effective means of isolating the malware and alerting the users of a downloaded malware. This shows the potential for avoiding the spreading of a detected malware to a larger community.\",\"PeriodicalId\":213305,\"journal\":{\"name\":\"Security and Privacy in Smartphones and Mobile Devices\",\"volume\":\"218 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1136\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Security and Privacy in Smartphones and Mobile Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2046614.2046619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Privacy in Smartphones and Mobile Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2046614.2046619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1136

摘要

随着市场上智能手机数量的急剧增加,Android平台即将成为市场的领导者,这使得对该平台的恶意软件分析成为一个紧迫的问题。在本文中,我们利用早期的方法对应用程序行为进行动态分析,作为检测Android平台恶意软件的手段。探测器被嵌入到一个整体框架中,以众包的方式收集来自无限数量的真实用户的痕迹。我们的框架已经通过使用两种类型的数据集分析在中央服务器中收集的数据来证明:那些来自为测试目的而创建的人工恶意软件,以及那些来自野外发现的真实恶意软件。该方法被证明是一种有效的隔离恶意软件和提醒用户下载恶意软件的手段。这显示了避免将检测到的恶意软件传播到更大的社区的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crowdroid: behavior-based malware detection system for Android
The sharp increase in the number of smartphones on the market, with the Android platform posed to becoming a market leader makes the need for malware analysis on this platform an urgent issue. In this paper we capitalize on earlier approaches for dynamic analysis of application behavior as a means for detecting malware in the Android platform. The detector is embedded in a overall framework for collection of traces from an unlimited number of real users based on crowdsourcing. Our framework has been demonstrated by analyzing the data collected in the central server using two types of data sets: those from artificial malware created for test purposes, and those from real malware found in the wild. The method is shown to be an effective means of isolating the malware and alerting the users of a downloaded malware. This shows the potential for avoiding the spreading of a detected malware to a larger community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信