用于谱聚类的紧支持图构建

A. E. Castro-Ospina, A. Álvarez-Meza, G. Castellanos-Domínguez
{"title":"用于谱聚类的紧支持图构建","authors":"A. E. Castro-Ospina, A. Álvarez-Meza, G. Castellanos-Domínguez","doi":"10.1109/IWOBI.2014.6913958","DOIUrl":null,"url":null,"abstract":"In spectral clustering approaches is of great importance how is built the graph representation over a data set, being reflected in the achieved clustering performance. In this work is introduced a methodology to build a graph representation of a given data, based on compactly supported radial basis functions which enables to highlight relevant pair-wise sample relationships. To tune such functions, an objective function is proposed, which aims to find a trade-off between a similarity and a sparsity measure, allowing to achieve a suitable local and global data structure representation. Synthetic and real-world data sets are tested. Results shows how proposed method improves clustering results, specially for an image segmentation task.","PeriodicalId":433659,"journal":{"name":"3rd IEEE International Work-Conference on Bioinspired Intelligence","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compactly supported graph building for spectral clustering\",\"authors\":\"A. E. Castro-Ospina, A. Álvarez-Meza, G. Castellanos-Domínguez\",\"doi\":\"10.1109/IWOBI.2014.6913958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In spectral clustering approaches is of great importance how is built the graph representation over a data set, being reflected in the achieved clustering performance. In this work is introduced a methodology to build a graph representation of a given data, based on compactly supported radial basis functions which enables to highlight relevant pair-wise sample relationships. To tune such functions, an objective function is proposed, which aims to find a trade-off between a similarity and a sparsity measure, allowing to achieve a suitable local and global data structure representation. Synthetic and real-world data sets are tested. Results shows how proposed method improves clustering results, specially for an image segmentation task.\",\"PeriodicalId\":433659,\"journal\":{\"name\":\"3rd IEEE International Work-Conference on Bioinspired Intelligence\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3rd IEEE International Work-Conference on Bioinspired Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWOBI.2014.6913958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd IEEE International Work-Conference on Bioinspired Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2014.6913958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在谱聚类方法中,如何在数据集上构建图表示是非常重要的,这反映在实现聚类性能上。在这项工作中,介绍了一种基于紧支持径向基函数的方法来构建给定数据的图形表示,该函数能够突出相关的成对样本关系。为了优化这些函数,提出了一个目标函数,旨在找到相似度和稀疏度度量之间的权衡,从而实现合适的局部和全局数据结构表示。合成和现实世界的数据集进行了测试。实验结果表明,该方法可以提高聚类结果,特别是在图像分割任务中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compactly supported graph building for spectral clustering
In spectral clustering approaches is of great importance how is built the graph representation over a data set, being reflected in the achieved clustering performance. In this work is introduced a methodology to build a graph representation of a given data, based on compactly supported radial basis functions which enables to highlight relevant pair-wise sample relationships. To tune such functions, an objective function is proposed, which aims to find a trade-off between a similarity and a sparsity measure, allowing to achieve a suitable local and global data structure representation. Synthetic and real-world data sets are tested. Results shows how proposed method improves clustering results, specially for an image segmentation task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信