{"title":"RapidEye时间序列季节统计的作物识别方法","authors":"E. Zillmann, H. Weichelt","doi":"10.1109/AGRO-GEOINFORMATICS.2014.6910572","DOIUrl":null,"url":null,"abstract":"Crop classification greatly benefits from the analysis of multi-temporal Earth Observation (EO) data within a growing season utilizing the distinct phenological behavior of each crop. RapidEye's high repetition rate increases the chances of providing sufficient high resolution image time series offering new ways of classifying crops. This study introduces a supervised decision tree (DT) classification approach using image objects in combination with seasonal statistics of various vegetation indices (VI) for crop identification. The aim of this study is, first, to show the potential of VI seasonal statistics for crop identification, and secondly, to evaluate the relative contribution of each variable to the overall classification accuracy. The results presented in this paper correspond to an area of 625 km2 in Saxony-Anhalt, Germany. The cultivated landscape is characterized by large agricultural fields, with winter wheat, canola, corn and winter barley as the main crops. Crop identification accuracies were assessed on the basis of reference fields and the importance of each employed variable is assessed by rule set analysis. The classification accuracy for the test area demonstrates that the proposed approach of multi-temporal image analysis provides spatially detailed and thematically accurate information on the crop type distribution.","PeriodicalId":161866,"journal":{"name":"2014 The Third International Conference on Agro-Geoinformatics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Crop identification by means of seasonal statistics of RapidEye time series\",\"authors\":\"E. Zillmann, H. Weichelt\",\"doi\":\"10.1109/AGRO-GEOINFORMATICS.2014.6910572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crop classification greatly benefits from the analysis of multi-temporal Earth Observation (EO) data within a growing season utilizing the distinct phenological behavior of each crop. RapidEye's high repetition rate increases the chances of providing sufficient high resolution image time series offering new ways of classifying crops. This study introduces a supervised decision tree (DT) classification approach using image objects in combination with seasonal statistics of various vegetation indices (VI) for crop identification. The aim of this study is, first, to show the potential of VI seasonal statistics for crop identification, and secondly, to evaluate the relative contribution of each variable to the overall classification accuracy. The results presented in this paper correspond to an area of 625 km2 in Saxony-Anhalt, Germany. The cultivated landscape is characterized by large agricultural fields, with winter wheat, canola, corn and winter barley as the main crops. Crop identification accuracies were assessed on the basis of reference fields and the importance of each employed variable is assessed by rule set analysis. The classification accuracy for the test area demonstrates that the proposed approach of multi-temporal image analysis provides spatially detailed and thematically accurate information on the crop type distribution.\",\"PeriodicalId\":161866,\"journal\":{\"name\":\"2014 The Third International Conference on Agro-Geoinformatics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 The Third International Conference on Agro-Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AGRO-GEOINFORMATICS.2014.6910572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 The Third International Conference on Agro-Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AGRO-GEOINFORMATICS.2014.6910572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crop identification by means of seasonal statistics of RapidEye time series
Crop classification greatly benefits from the analysis of multi-temporal Earth Observation (EO) data within a growing season utilizing the distinct phenological behavior of each crop. RapidEye's high repetition rate increases the chances of providing sufficient high resolution image time series offering new ways of classifying crops. This study introduces a supervised decision tree (DT) classification approach using image objects in combination with seasonal statistics of various vegetation indices (VI) for crop identification. The aim of this study is, first, to show the potential of VI seasonal statistics for crop identification, and secondly, to evaluate the relative contribution of each variable to the overall classification accuracy. The results presented in this paper correspond to an area of 625 km2 in Saxony-Anhalt, Germany. The cultivated landscape is characterized by large agricultural fields, with winter wheat, canola, corn and winter barley as the main crops. Crop identification accuracies were assessed on the basis of reference fields and the importance of each employed variable is assessed by rule set analysis. The classification accuracy for the test area demonstrates that the proposed approach of multi-temporal image analysis provides spatially detailed and thematically accurate information on the crop type distribution.