{"title":"RobuSTore:一种具有鲁棒性和高性能的分布式存储架构","authors":"Huaxia Xia","doi":"10.1145/1362622.1362682","DOIUrl":null,"url":null,"abstract":"Emerging large-scale scientific applications require to access large data objects in high and robust performance. We propose RobuSTore, a storage architecture that combines erasure codes and speculative access mechanisms for parallel write and read in distributed environments. The mechanisms can effectively aggregate the bandwidth from a large number of distributed disks and statistically tolerate pear-disk performance variation. Our simulation results affirm the high and robust performance of RobuSTore in both write and read operations compared to traditional parallel storage systems. For example, for a 1GB data access using 64 disks, RobuSTore achieves average bandwidth of 186MBps for write and 400MBps for read, nearly 6x and 15x that achieved by a RAID-0 system. The standard deviation of access latency is only 0.5 second, about 9% of the write latency and 20% of the read latency, and a 5-fold improvement from RAID-0. The improvements are achieved at moderate cost: about 40% increase in I/O operations and 2x-3x increase in storage capacity utilization.","PeriodicalId":274744,"journal":{"name":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"RobuSTore: a distributed storage architecture with robust and high performance\",\"authors\":\"Huaxia Xia\",\"doi\":\"10.1145/1362622.1362682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging large-scale scientific applications require to access large data objects in high and robust performance. We propose RobuSTore, a storage architecture that combines erasure codes and speculative access mechanisms for parallel write and read in distributed environments. The mechanisms can effectively aggregate the bandwidth from a large number of distributed disks and statistically tolerate pear-disk performance variation. Our simulation results affirm the high and robust performance of RobuSTore in both write and read operations compared to traditional parallel storage systems. For example, for a 1GB data access using 64 disks, RobuSTore achieves average bandwidth of 186MBps for write and 400MBps for read, nearly 6x and 15x that achieved by a RAID-0 system. The standard deviation of access latency is only 0.5 second, about 9% of the write latency and 20% of the read latency, and a 5-fold improvement from RAID-0. The improvements are achieved at moderate cost: about 40% increase in I/O operations and 2x-3x increase in storage capacity utilization.\",\"PeriodicalId\":274744,\"journal\":{\"name\":\"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1362622.1362682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1362622.1362682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RobuSTore: a distributed storage architecture with robust and high performance
Emerging large-scale scientific applications require to access large data objects in high and robust performance. We propose RobuSTore, a storage architecture that combines erasure codes and speculative access mechanisms for parallel write and read in distributed environments. The mechanisms can effectively aggregate the bandwidth from a large number of distributed disks and statistically tolerate pear-disk performance variation. Our simulation results affirm the high and robust performance of RobuSTore in both write and read operations compared to traditional parallel storage systems. For example, for a 1GB data access using 64 disks, RobuSTore achieves average bandwidth of 186MBps for write and 400MBps for read, nearly 6x and 15x that achieved by a RAID-0 system. The standard deviation of access latency is only 0.5 second, about 9% of the write latency and 20% of the read latency, and a 5-fold improvement from RAID-0. The improvements are achieved at moderate cost: about 40% increase in I/O operations and 2x-3x increase in storage capacity utilization.