图分区应用于DAG调度,减少NUMA效应

Isaac Sánchez Barrera, Marc Casas, Miquel Moretó, E. Ayguadé, Jesús Labarta, M. Valero
{"title":"图分区应用于DAG调度,减少NUMA效应","authors":"Isaac Sánchez Barrera, Marc Casas, Miquel Moretó, E. Ayguadé, Jesús Labarta, M. Valero","doi":"10.1145/3178487.3178535","DOIUrl":null,"url":null,"abstract":"The complexity of shared memory systems is becoming more relevant as the number of memory domains increases, with different access latencies and bandwidth rates depending on the proximity between the cores and the devices containing the data. In this context, techniques to manage and mitigate non-uniform memory access (NUMA) effects consist in migrating threads, memory pages or both and are typically applied by the system software. We propose techniques at the runtime system level to reduce NUMA effects on parallel applications. We leverage runtime system metadata in terms of a task dependency graph. Our approach, based on graph partitioning methods, is able to provide parallel performance improvements of 1.12X on average with respect to the state-of-the-art.","PeriodicalId":193776,"journal":{"name":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Graph partitioning applied to DAG scheduling to reduce NUMA effects\",\"authors\":\"Isaac Sánchez Barrera, Marc Casas, Miquel Moretó, E. Ayguadé, Jesús Labarta, M. Valero\",\"doi\":\"10.1145/3178487.3178535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complexity of shared memory systems is becoming more relevant as the number of memory domains increases, with different access latencies and bandwidth rates depending on the proximity between the cores and the devices containing the data. In this context, techniques to manage and mitigate non-uniform memory access (NUMA) effects consist in migrating threads, memory pages or both and are typically applied by the system software. We propose techniques at the runtime system level to reduce NUMA effects on parallel applications. We leverage runtime system metadata in terms of a task dependency graph. Our approach, based on graph partitioning methods, is able to provide parallel performance improvements of 1.12X on average with respect to the state-of-the-art.\",\"PeriodicalId\":193776,\"journal\":{\"name\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3178487.3178535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3178487.3178535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

随着内存域数量的增加,共享内存系统的复杂性变得越来越重要,不同的访问延迟和带宽速率取决于内核和包含数据的设备之间的接近程度。在这种情况下,管理和减轻非均匀内存访问(NUMA)影响的技术包括迁移线程、内存页面或两者,通常由系统软件应用。我们提出了运行时系统级的技术来减少NUMA对并行应用程序的影响。我们根据任务依赖关系图利用运行时系统元数据。我们的方法基于图划分方法,相对于最先进的技术,能够提供平均1.12倍的并行性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph partitioning applied to DAG scheduling to reduce NUMA effects
The complexity of shared memory systems is becoming more relevant as the number of memory domains increases, with different access latencies and bandwidth rates depending on the proximity between the cores and the devices containing the data. In this context, techniques to manage and mitigate non-uniform memory access (NUMA) effects consist in migrating threads, memory pages or both and are typically applied by the system software. We propose techniques at the runtime system level to reduce NUMA effects on parallel applications. We leverage runtime system metadata in terms of a task dependency graph. Our approach, based on graph partitioning methods, is able to provide parallel performance improvements of 1.12X on average with respect to the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信