光网络中QoT估计的域自适应方法评价

R. Marino, C. Rottondi, A. Giusti, A. Bianco
{"title":"光网络中QoT估计的域自适应方法评价","authors":"R. Marino, C. Rottondi, A. Giusti, A. Bianco","doi":"10.1364/ofc.2020.th3d.2","DOIUrl":null,"url":null,"abstract":"We evaluate the performance of two domain adaptation approaches for machine learning assisted quality of transmission estimation of an optical lightpath, for a fixed/variable number of available training samples from the source/target domain.","PeriodicalId":173355,"journal":{"name":"2020 Optical Fiber Communications Conference and Exhibition (OFC)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Assessment of Domain Adaptation Approaches for QoT Estimation in Optical Networks\",\"authors\":\"R. Marino, C. Rottondi, A. Giusti, A. Bianco\",\"doi\":\"10.1364/ofc.2020.th3d.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We evaluate the performance of two domain adaptation approaches for machine learning assisted quality of transmission estimation of an optical lightpath, for a fixed/variable number of available training samples from the source/target domain.\",\"PeriodicalId\":173355,\"journal\":{\"name\":\"2020 Optical Fiber Communications Conference and Exhibition (OFC)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Optical Fiber Communications Conference and Exhibition (OFC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/ofc.2020.th3d.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Optical Fiber Communications Conference and Exhibition (OFC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/ofc.2020.th3d.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

对于来自源/目标域的固定/可变数量的可用训练样本,我们评估了机器学习辅助光学光路传输质量估计的两种域自适应方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Domain Adaptation Approaches for QoT Estimation in Optical Networks
We evaluate the performance of two domain adaptation approaches for machine learning assisted quality of transmission estimation of an optical lightpath, for a fixed/variable number of available training samples from the source/target domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信