基于三次优化的弹性网络正则化逻辑回归

M. Nilsson
{"title":"基于三次优化的弹性网络正则化逻辑回归","authors":"M. Nilsson","doi":"10.1109/ICPR.2014.593","DOIUrl":null,"url":null,"abstract":"In this work, a coordinate solver for elastic net regularized logistic regression is proposed. In particular, a method based on majorization maximization using a cubic function is derived. This to reliably and accurately optimize the objective function at each step without resorting to line search. Experiments show that the proposed solver is comparable to, or improves, state-of-the-art solvers. The proposed method is simpler, in the sense that there is no need for any line search, and can directly be used for small to large scale learning problems with elastic net regularization.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Elastic Net Regularized Logistic Regression Using Cubic Majorization\",\"authors\":\"M. Nilsson\",\"doi\":\"10.1109/ICPR.2014.593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a coordinate solver for elastic net regularized logistic regression is proposed. In particular, a method based on majorization maximization using a cubic function is derived. This to reliably and accurately optimize the objective function at each step without resorting to line search. Experiments show that the proposed solver is comparable to, or improves, state-of-the-art solvers. The proposed method is simpler, in the sense that there is no need for any line search, and can directly be used for small to large scale learning problems with elastic net regularization.\",\"PeriodicalId\":142159,\"journal\":{\"name\":\"2014 22nd International Conference on Pattern Recognition\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2014.593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了弹性网正则化逻辑回归的坐标求解器。特别提出了一种基于三次函数的最大化方法。这使得目标函数在每一步都能可靠、准确地优化,而不需要进行直线搜索。实验表明,所提出的求解器可与最先进的求解器相媲美或改进。该方法更简单,不需要任何直线搜索,可以直接用于弹性网络正则化的小到大规模学习问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elastic Net Regularized Logistic Regression Using Cubic Majorization
In this work, a coordinate solver for elastic net regularized logistic regression is proposed. In particular, a method based on majorization maximization using a cubic function is derived. This to reliably and accurately optimize the objective function at each step without resorting to line search. Experiments show that the proposed solver is comparable to, or improves, state-of-the-art solvers. The proposed method is simpler, in the sense that there is no need for any line search, and can directly be used for small to large scale learning problems with elastic net regularization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信