Joaquin M. Bozzalla, Juan J. Silva, Jorge L. Márquez, L. Seijas
{"title":"基于YOLOv4的SAR数据船舶检测模型:在SAOCOM和Sentinel图像上的应用","authors":"Joaquin M. Bozzalla, Juan J. Silva, Jorge L. Márquez, L. Seijas","doi":"10.1109/ARGENCON55245.2022.9940126","DOIUrl":null,"url":null,"abstract":"Synthetic Aperture Radar satellites are becoming increasingly important in the field of Earth observation and maritime surveillance. Given the large amount of data generated by satellite platforms, the use of advanced techniques is required to extract useful information from them. Currently, deep learning techniques applied to object detection obtain a high performance, in particular with the use of convolutional neural networks. This work proposes a model with YOLOv4 architecture trained with the HRSID dataset (with offshore and inshore images) using Transfer Learning, which obtains a performance that improves results present in the literature. A suitable set of hyperparameter values is sought and the modification of the architecture is explored in relation to the size of the input image and the structure of the SPP spatial pyramidal pooling layer. Finally, the model is tested against scenes captured with Sentinel 1 and SAOCOM 1A satellites that were not present in the training.","PeriodicalId":318846,"journal":{"name":"2022 IEEE Biennial Congress of Argentina (ARGENCON)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Ship Detection Model for SAR Data based on YOLOv4: Application to Images from SAOCOM and Sentinel\",\"authors\":\"Joaquin M. Bozzalla, Juan J. Silva, Jorge L. Márquez, L. Seijas\",\"doi\":\"10.1109/ARGENCON55245.2022.9940126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic Aperture Radar satellites are becoming increasingly important in the field of Earth observation and maritime surveillance. Given the large amount of data generated by satellite platforms, the use of advanced techniques is required to extract useful information from them. Currently, deep learning techniques applied to object detection obtain a high performance, in particular with the use of convolutional neural networks. This work proposes a model with YOLOv4 architecture trained with the HRSID dataset (with offshore and inshore images) using Transfer Learning, which obtains a performance that improves results present in the literature. A suitable set of hyperparameter values is sought and the modification of the architecture is explored in relation to the size of the input image and the structure of the SPP spatial pyramidal pooling layer. Finally, the model is tested against scenes captured with Sentinel 1 and SAOCOM 1A satellites that were not present in the training.\",\"PeriodicalId\":318846,\"journal\":{\"name\":\"2022 IEEE Biennial Congress of Argentina (ARGENCON)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Biennial Congress of Argentina (ARGENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARGENCON55245.2022.9940126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Biennial Congress of Argentina (ARGENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARGENCON55245.2022.9940126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Ship Detection Model for SAR Data based on YOLOv4: Application to Images from SAOCOM and Sentinel
Synthetic Aperture Radar satellites are becoming increasingly important in the field of Earth observation and maritime surveillance. Given the large amount of data generated by satellite platforms, the use of advanced techniques is required to extract useful information from them. Currently, deep learning techniques applied to object detection obtain a high performance, in particular with the use of convolutional neural networks. This work proposes a model with YOLOv4 architecture trained with the HRSID dataset (with offshore and inshore images) using Transfer Learning, which obtains a performance that improves results present in the literature. A suitable set of hyperparameter values is sought and the modification of the architecture is explored in relation to the size of the input image and the structure of the SPP spatial pyramidal pooling layer. Finally, the model is tested against scenes captured with Sentinel 1 and SAOCOM 1A satellites that were not present in the training.