设定产品规格限值的统计指南

L. Hund, Daniel L. Campbell, Justin T. Newcomer
{"title":"设定产品规格限值的统计指南","authors":"L. Hund, Daniel L. Campbell, Justin T. Newcomer","doi":"10.1109/RAM.2017.7889664","DOIUrl":null,"url":null,"abstract":"This document outlines a data-driven probabilistic approach to setting product acceptance testing limits. Product Specification (PS) limits are testing requirements for assuring that the product meets the product requirements. After identifying key manufacturing and performance parameters for acceptance testing, PS limits should be specified for these parameters, with the limits selected to assure that the unit will have a very high likelihood of meeting product requirements (barring any quality defects that would not be detected in acceptance testing). Because the settings for which the product requirements must be met is typically broader than the production acceptance testing space, PS limits should account for the difference between the acceptance testing setting relative to the worst-case setting. We propose an approach to setting PS limits that is based on demonstrating margin to the product requirement in the worst-case setting in which the requirement must be met. PS limits are then determined by considering the overall margin and uncertainty associated with a component requirement and then balancing this margin and uncertainty between the designer and producer. Specifically, after identifying parameters critical to component performance, we propose setting PS limits using a three step procedure: 1. Specify the acceptance testing and worst-case use-settings, the performance characteristic distributions in these two settings, and the mapping between these distributions. 2. Determine the PS limit in the worst-case use-setting by considering margin to the requirement and additional (epistemic) uncertainties. This step controls designer risk, namely the risk of producing product that violates requirements. 3. Define the PS limit for product acceptance testing by transforming the PS limit from the worst-case setting to the acceptance testing setting using the mapping between these distributions. Following this step, the producer risk is quantified by estimating the product scrap rate based on the projected acceptance testing distribution. The approach proposed here provides a framework for documenting the procedure and assumptions used to determine PS limits. This transparency in procedure will help inform what actions should occur when a unit violates a PS limit and how limits should change over time.","PeriodicalId":138871,"journal":{"name":"2017 Annual Reliability and Maintainability Symposium (RAMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Statistical guidance for setting product specification limits\",\"authors\":\"L. Hund, Daniel L. Campbell, Justin T. Newcomer\",\"doi\":\"10.1109/RAM.2017.7889664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This document outlines a data-driven probabilistic approach to setting product acceptance testing limits. Product Specification (PS) limits are testing requirements for assuring that the product meets the product requirements. After identifying key manufacturing and performance parameters for acceptance testing, PS limits should be specified for these parameters, with the limits selected to assure that the unit will have a very high likelihood of meeting product requirements (barring any quality defects that would not be detected in acceptance testing). Because the settings for which the product requirements must be met is typically broader than the production acceptance testing space, PS limits should account for the difference between the acceptance testing setting relative to the worst-case setting. We propose an approach to setting PS limits that is based on demonstrating margin to the product requirement in the worst-case setting in which the requirement must be met. PS limits are then determined by considering the overall margin and uncertainty associated with a component requirement and then balancing this margin and uncertainty between the designer and producer. Specifically, after identifying parameters critical to component performance, we propose setting PS limits using a three step procedure: 1. Specify the acceptance testing and worst-case use-settings, the performance characteristic distributions in these two settings, and the mapping between these distributions. 2. Determine the PS limit in the worst-case use-setting by considering margin to the requirement and additional (epistemic) uncertainties. This step controls designer risk, namely the risk of producing product that violates requirements. 3. Define the PS limit for product acceptance testing by transforming the PS limit from the worst-case setting to the acceptance testing setting using the mapping between these distributions. Following this step, the producer risk is quantified by estimating the product scrap rate based on the projected acceptance testing distribution. The approach proposed here provides a framework for documenting the procedure and assumptions used to determine PS limits. This transparency in procedure will help inform what actions should occur when a unit violates a PS limit and how limits should change over time.\",\"PeriodicalId\":138871,\"journal\":{\"name\":\"2017 Annual Reliability and Maintainability Symposium (RAMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Annual Reliability and Maintainability Symposium (RAMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAM.2017.7889664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Annual Reliability and Maintainability Symposium (RAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAM.2017.7889664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文档概述了一种数据驱动的概率方法来设置产品验收测试限制。产品规范(PS)限值是确保产品符合产品要求的测试要求。在确定验收测试的关键制造和性能参数后,应为这些参数指定PS限值,所选择的限值应确保装置具有非常高的满足产品要求的可能性(排除在验收测试中无法检测到的任何质量缺陷)。由于必须满足产品要求的设置通常比生产验收测试空间更宽,PS限制应考虑验收测试设置与最坏情况设置之间的差异。我们提出了一种设置PS限制的方法,该方法基于在必须满足需求的最坏情况下展示产品需求的边际。PS限制是通过考虑与组件需求相关的总体余量和不确定性,然后在设计师和制作人之间平衡余量和不确定性来确定的。具体而言,在确定对组件性能至关重要的参数后,我们建议使用三步程序设置PS限制:指定验收测试和最坏情况使用设置,这两个设置中的性能特征分布,以及这些分布之间的映射。2. 通过考虑需求余量和额外的(认知)不确定性,确定最坏情况下的PS限制。这个步骤控制设计者的风险,即生产出违反要求的产品的风险。3.通过使用这些分布之间的映射,将PS限制从最坏情况设置转换为验收测试设置,从而定义产品验收测试的PS限制。在这一步之后,生产者的风险是通过基于预计的验收测试分布估计产品废品率来量化的。这里提出的方法为记录用于确定PS限制的程序和假设提供了一个框架。这种程序的透明度将有助于告知当一个单位违反PS限制时应该采取什么行动,以及限制应该如何随时间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical guidance for setting product specification limits
This document outlines a data-driven probabilistic approach to setting product acceptance testing limits. Product Specification (PS) limits are testing requirements for assuring that the product meets the product requirements. After identifying key manufacturing and performance parameters for acceptance testing, PS limits should be specified for these parameters, with the limits selected to assure that the unit will have a very high likelihood of meeting product requirements (barring any quality defects that would not be detected in acceptance testing). Because the settings for which the product requirements must be met is typically broader than the production acceptance testing space, PS limits should account for the difference between the acceptance testing setting relative to the worst-case setting. We propose an approach to setting PS limits that is based on demonstrating margin to the product requirement in the worst-case setting in which the requirement must be met. PS limits are then determined by considering the overall margin and uncertainty associated with a component requirement and then balancing this margin and uncertainty between the designer and producer. Specifically, after identifying parameters critical to component performance, we propose setting PS limits using a three step procedure: 1. Specify the acceptance testing and worst-case use-settings, the performance characteristic distributions in these two settings, and the mapping between these distributions. 2. Determine the PS limit in the worst-case use-setting by considering margin to the requirement and additional (epistemic) uncertainties. This step controls designer risk, namely the risk of producing product that violates requirements. 3. Define the PS limit for product acceptance testing by transforming the PS limit from the worst-case setting to the acceptance testing setting using the mapping between these distributions. Following this step, the producer risk is quantified by estimating the product scrap rate based on the projected acceptance testing distribution. The approach proposed here provides a framework for documenting the procedure and assumptions used to determine PS limits. This transparency in procedure will help inform what actions should occur when a unit violates a PS limit and how limits should change over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信