利用深度学习和人工智能设计射频滤波器

Mouatez Bellah Karabaghli, K. Frigui, Mouhamadou Moctar, S. Bila, D. Baillargeat
{"title":"利用深度学习和人工智能设计射频滤波器","authors":"Mouatez Bellah Karabaghli, K. Frigui, Mouhamadou Moctar, S. Bila, D. Baillargeat","doi":"10.1109/NEMO51452.2022.10038522","DOIUrl":null,"url":null,"abstract":"In this paper an RF filter optimization by using deep learning method is presented. This approach allows to predict the geometrical dimensions of the RF filter based on S-parameters as input data. A validation of this method is detailed by designing a four-pole rectangular waveguide filter.","PeriodicalId":102131,"journal":{"name":"2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RF filter design using Deep Learning and Artificial Intelligence\",\"authors\":\"Mouatez Bellah Karabaghli, K. Frigui, Mouhamadou Moctar, S. Bila, D. Baillargeat\",\"doi\":\"10.1109/NEMO51452.2022.10038522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an RF filter optimization by using deep learning method is presented. This approach allows to predict the geometrical dimensions of the RF filter based on S-parameters as input data. A validation of this method is detailed by designing a four-pole rectangular waveguide filter.\",\"PeriodicalId\":102131,\"journal\":{\"name\":\"2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMO51452.2022.10038522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO51452.2022.10038522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于深度学习的射频滤波器优化方法。这种方法可以基于s参数作为输入数据来预测RF滤波器的几何尺寸。通过设计一个四极矩形波导滤波器,详细验证了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RF filter design using Deep Learning and Artificial Intelligence
In this paper an RF filter optimization by using deep learning method is presented. This approach allows to predict the geometrical dimensions of the RF filter based on S-parameters as input data. A validation of this method is detailed by designing a four-pole rectangular waveguide filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信