Mouatez Bellah Karabaghli, K. Frigui, Mouhamadou Moctar, S. Bila, D. Baillargeat
{"title":"利用深度学习和人工智能设计射频滤波器","authors":"Mouatez Bellah Karabaghli, K. Frigui, Mouhamadou Moctar, S. Bila, D. Baillargeat","doi":"10.1109/NEMO51452.2022.10038522","DOIUrl":null,"url":null,"abstract":"In this paper an RF filter optimization by using deep learning method is presented. This approach allows to predict the geometrical dimensions of the RF filter based on S-parameters as input data. A validation of this method is detailed by designing a four-pole rectangular waveguide filter.","PeriodicalId":102131,"journal":{"name":"2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RF filter design using Deep Learning and Artificial Intelligence\",\"authors\":\"Mouatez Bellah Karabaghli, K. Frigui, Mouhamadou Moctar, S. Bila, D. Baillargeat\",\"doi\":\"10.1109/NEMO51452.2022.10038522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an RF filter optimization by using deep learning method is presented. This approach allows to predict the geometrical dimensions of the RF filter based on S-parameters as input data. A validation of this method is detailed by designing a four-pole rectangular waveguide filter.\",\"PeriodicalId\":102131,\"journal\":{\"name\":\"2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMO51452.2022.10038522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO51452.2022.10038522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RF filter design using Deep Learning and Artificial Intelligence
In this paper an RF filter optimization by using deep learning method is presented. This approach allows to predict the geometrical dimensions of the RF filter based on S-parameters as input data. A validation of this method is detailed by designing a four-pole rectangular waveguide filter.