磁感应磁声层析成像中一种特殊类型的各向异性电导率的稳定性和重建

Niall Donlon, Romina Gaburro, S. Moskow, Isaac D. Woods
{"title":"磁感应磁声层析成像中一种特殊类型的各向异性电导率的稳定性和重建","authors":"Niall Donlon, Romina Gaburro, S. Moskow, Isaac D. Woods","doi":"10.1137/22m1512260","DOIUrl":null,"url":null,"abstract":"We consider the issues of stability and reconstruction of the electrical anisotropic conductivity of biological tissues in a domain $\\Omega\\subset\\mathbb{R}^3$ by means of the hybrid inverse problem of magneto-acoustic tomography with magnetic induction (MAT-MI). The class of anisotropic conductivities considered here is of type $\\sigma(\\cdot)=A(\\cdot,\\gamma(\\cdot))$ in $\\Omega$, where $[\\lambda^{-1}, \\lambda]\\ni t\\mapsto A(\\cdot, t)$ is a one-parameter family of matrix-valued functions which are \\textit{a-priori} known to be $C^{1,\\beta}$, allowing us to stably reconstruct $\\gamma$ in $\\Omega$ in terms of an internal functional $F(\\sigma)$. Our results also extend previous results in MAT-MI where $\\sigma(\\cdot) = \\gamma(\\cdot) D(\\cdot)$, with $D$ an \\textit{a-priori} known matrix-valued function on $\\Omega$ to a more general anisotropic structure which depends non-linearly on the scalar function $\\gamma$ to be reconstructed.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and Reconstruction of a Special Type of Anisotropic Conductivity in Magneto-Acoustic Tomography with Magnetic Induction\",\"authors\":\"Niall Donlon, Romina Gaburro, S. Moskow, Isaac D. Woods\",\"doi\":\"10.1137/22m1512260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the issues of stability and reconstruction of the electrical anisotropic conductivity of biological tissues in a domain $\\\\Omega\\\\subset\\\\mathbb{R}^3$ by means of the hybrid inverse problem of magneto-acoustic tomography with magnetic induction (MAT-MI). The class of anisotropic conductivities considered here is of type $\\\\sigma(\\\\cdot)=A(\\\\cdot,\\\\gamma(\\\\cdot))$ in $\\\\Omega$, where $[\\\\lambda^{-1}, \\\\lambda]\\\\ni t\\\\mapsto A(\\\\cdot, t)$ is a one-parameter family of matrix-valued functions which are \\\\textit{a-priori} known to be $C^{1,\\\\beta}$, allowing us to stably reconstruct $\\\\gamma$ in $\\\\Omega$ in terms of an internal functional $F(\\\\sigma)$. Our results also extend previous results in MAT-MI where $\\\\sigma(\\\\cdot) = \\\\gamma(\\\\cdot) D(\\\\cdot)$, with $D$ an \\\\textit{a-priori} known matrix-valued function on $\\\\Omega$ to a more general anisotropic structure which depends non-linearly on the scalar function $\\\\gamma$ to be reconstructed.\",\"PeriodicalId\":185319,\"journal\":{\"name\":\"SIAM J. Imaging Sci.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Imaging Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1512260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1512260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用磁声层析成像与磁感应(MAT-MI)的混合反问题,研究了$\Omega\subset\mathbb{R}^3$区域内生物组织各向异性电导率的稳定性和重建问题。这里考虑的各向异性电导率类型为$\Omega$中的$\sigma(\cdot)=A(\cdot,\gamma(\cdot))$,其中$[\lambda^{-1}, \lambda]\ni t\mapsto A(\cdot, t)$是一个单参数矩阵值函数族,\textit{先验}已知为$C^{1,\beta}$,允许我们根据内部函数$F(\sigma)$稳定地重建$\Omega$中的$\gamma$。我们的结果还扩展了MAT-MI中先前的结果,其中$\sigma(\cdot) = \gamma(\cdot) D(\cdot)$, $D$是$\Omega$上\textit{先验}已知的矩阵值函数,到更一般的各向异性结构,该结构非线性地依赖于要重建的标量函数$\gamma$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and Reconstruction of a Special Type of Anisotropic Conductivity in Magneto-Acoustic Tomography with Magnetic Induction
We consider the issues of stability and reconstruction of the electrical anisotropic conductivity of biological tissues in a domain $\Omega\subset\mathbb{R}^3$ by means of the hybrid inverse problem of magneto-acoustic tomography with magnetic induction (MAT-MI). The class of anisotropic conductivities considered here is of type $\sigma(\cdot)=A(\cdot,\gamma(\cdot))$ in $\Omega$, where $[\lambda^{-1}, \lambda]\ni t\mapsto A(\cdot, t)$ is a one-parameter family of matrix-valued functions which are \textit{a-priori} known to be $C^{1,\beta}$, allowing us to stably reconstruct $\gamma$ in $\Omega$ in terms of an internal functional $F(\sigma)$. Our results also extend previous results in MAT-MI where $\sigma(\cdot) = \gamma(\cdot) D(\cdot)$, with $D$ an \textit{a-priori} known matrix-valued function on $\Omega$ to a more general anisotropic structure which depends non-linearly on the scalar function $\gamma$ to be reconstructed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信