{"title":"磁场作用下人工原子输运性质的数值研究","authors":"M. Eto","doi":"10.1109/IWCE.1998.742729","DOIUrl":null,"url":null,"abstract":"The many-body states in an artificial atom and its transport properties have been examined by numerical studies. The magnetic field dependence of both the ground state and low-lying excited states, obtained by the exact diagonalisation method, is in good agreement with experimental results. We have proposed two possible mechanisms for the anomalous T dependence of conductance peak heights. With increasing magnetic field, the correlation effect becomes stronger, which suppresses the conductance considerably.","PeriodicalId":357304,"journal":{"name":"1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical studies of transport properties through artificial atoms under magnetic fields\",\"authors\":\"M. Eto\",\"doi\":\"10.1109/IWCE.1998.742729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The many-body states in an artificial atom and its transport properties have been examined by numerical studies. The magnetic field dependence of both the ground state and low-lying excited states, obtained by the exact diagonalisation method, is in good agreement with experimental results. We have proposed two possible mechanisms for the anomalous T dependence of conductance peak heights. With increasing magnetic field, the correlation effect becomes stronger, which suppresses the conductance considerably.\",\"PeriodicalId\":357304,\"journal\":{\"name\":\"1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.1998.742729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.1998.742729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical studies of transport properties through artificial atoms under magnetic fields
The many-body states in an artificial atom and its transport properties have been examined by numerical studies. The magnetic field dependence of both the ground state and low-lying excited states, obtained by the exact diagonalisation method, is in good agreement with experimental results. We have proposed two possible mechanisms for the anomalous T dependence of conductance peak heights. With increasing magnetic field, the correlation effect becomes stronger, which suppresses the conductance considerably.