单位磁盘到星形域的高精度保角映射

M. Holzinger
{"title":"单位磁盘到星形域的高精度保角映射","authors":"M. Holzinger","doi":"10.11128/sne.30.tn.10521","DOIUrl":null,"url":null,"abstract":"Having the conformal map from unit square to unit disk at hand, we ask ourselves for a way to numerically map the disk to more general domains. Once such domains are parametrized by the square, knowledge of metric quantities flows in by the derivatives of the map and simulation of PDEs on such domains can easily be achieved. One way to numerically construct the map for star-shaped regions yields over solving Theodorsen’s integral equation which establishes the boundary correspondence of angles. Focusing on highly accurate solutions, we presentMathematica test implementations and results for maps from unit disk to inverted ellipse (a), unit square (b) and onto a more general domain (c). Finally, the metric impact of the conformal map on the PDE itself is being investigated to enlighten the process of correcting spacial Finite-Difference approximations in general.","PeriodicalId":262785,"journal":{"name":"Simul. Notes Eur.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High Precision Conformal Map of the Unit Disk to Star-Shaped Domains\",\"authors\":\"M. Holzinger\",\"doi\":\"10.11128/sne.30.tn.10521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Having the conformal map from unit square to unit disk at hand, we ask ourselves for a way to numerically map the disk to more general domains. Once such domains are parametrized by the square, knowledge of metric quantities flows in by the derivatives of the map and simulation of PDEs on such domains can easily be achieved. One way to numerically construct the map for star-shaped regions yields over solving Theodorsen’s integral equation which establishes the boundary correspondence of angles. Focusing on highly accurate solutions, we presentMathematica test implementations and results for maps from unit disk to inverted ellipse (a), unit square (b) and onto a more general domain (c). Finally, the metric impact of the conformal map on the PDE itself is being investigated to enlighten the process of correcting spacial Finite-Difference approximations in general.\",\"PeriodicalId\":262785,\"journal\":{\"name\":\"Simul. Notes Eur.\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simul. Notes Eur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11128/sne.30.tn.10521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simul. Notes Eur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11128/sne.30.tn.10521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

有了从单位正方形到单位磁盘的保角映射,我们要求自己找到一种将磁盘数值映射到更一般域的方法。一旦这些域被平方参数化,度量量的知识就会通过地图的导数流入,并且这些域上的偏微分方程的模拟就很容易实现。一种数值构造星形区域图的方法是求解Theodorsen积分方程,该方程建立了角的边界对应关系。专注于高精度的解决方案,我们介绍了从单位圆盘到倒椭圆(a)、单位正方形(b)和更一般的域(c)的映射的mathematica测试实现和结果。最后,正在研究保角映射对PDE本身的度量影响,以启发一般空间有限差分近似的校正过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Precision Conformal Map of the Unit Disk to Star-Shaped Domains
Having the conformal map from unit square to unit disk at hand, we ask ourselves for a way to numerically map the disk to more general domains. Once such domains are parametrized by the square, knowledge of metric quantities flows in by the derivatives of the map and simulation of PDEs on such domains can easily be achieved. One way to numerically construct the map for star-shaped regions yields over solving Theodorsen’s integral equation which establishes the boundary correspondence of angles. Focusing on highly accurate solutions, we presentMathematica test implementations and results for maps from unit disk to inverted ellipse (a), unit square (b) and onto a more general domain (c). Finally, the metric impact of the conformal map on the PDE itself is being investigated to enlighten the process of correcting spacial Finite-Difference approximations in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信