用自组织代理模拟人体单个运动单元

Ö. Gürcan, C. Bernon, K. Türker, J. Mano, P. Glize, Oğuz Dikenelli
{"title":"用自组织代理模拟人体单个运动单元","authors":"Ö. Gürcan, C. Bernon, K. Türker, J. Mano, P. Glize, Oğuz Dikenelli","doi":"10.1109/SASO.2012.18","DOIUrl":null,"url":null,"abstract":"Understanding functional synaptic connectivity of human central nervous system is one of the holy grails of the neuroscience. Due to the complexity of nervous system, it is common to reduce the problem to smaller networks such as motor unit pathways. In this sense, we designed and developed a simulation model that learns acting in the same way of human single motor units by using findings on human subjects. The developed model is based on self-organizing agents whose nominal and cooperative behaviors are based on the current knowledge on biological neural networks. The results show that the simulation model generates similar functionality with the observed data.","PeriodicalId":126067,"journal":{"name":"2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Simulating Human Single Motor Units Using Self-Organizing Agents\",\"authors\":\"Ö. Gürcan, C. Bernon, K. Türker, J. Mano, P. Glize, Oğuz Dikenelli\",\"doi\":\"10.1109/SASO.2012.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding functional synaptic connectivity of human central nervous system is one of the holy grails of the neuroscience. Due to the complexity of nervous system, it is common to reduce the problem to smaller networks such as motor unit pathways. In this sense, we designed and developed a simulation model that learns acting in the same way of human single motor units by using findings on human subjects. The developed model is based on self-organizing agents whose nominal and cooperative behaviors are based on the current knowledge on biological neural networks. The results show that the simulation model generates similar functionality with the observed data.\",\"PeriodicalId\":126067,\"journal\":{\"name\":\"2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASO.2012.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Sixth International Conference on Self-Adaptive and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2012.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

了解人类中枢神经系统的功能性突触连通性是神经科学的圣杯之一。由于神经系统的复杂性,通常将问题缩小到更小的网络,如运动单元通路。从这个意义上讲,我们设计并开发了一个模拟模型,该模型通过对人类受试者的研究结果,以与人类单个运动单元相同的方式学习动作。该模型基于自组织智能体,其名义和合作行为基于生物神经网络的现有知识。结果表明,仿真模型与观测数据具有相似的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulating Human Single Motor Units Using Self-Organizing Agents
Understanding functional synaptic connectivity of human central nervous system is one of the holy grails of the neuroscience. Due to the complexity of nervous system, it is common to reduce the problem to smaller networks such as motor unit pathways. In this sense, we designed and developed a simulation model that learns acting in the same way of human single motor units by using findings on human subjects. The developed model is based on self-organizing agents whose nominal and cooperative behaviors are based on the current knowledge on biological neural networks. The results show that the simulation model generates similar functionality with the observed data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信