基于人工神经网络的异步电动机直接转矩控制采用MRAS和神经PID控制器进行速度控制

M. L. Zegai, M. Bendjebbar, K. Belhadri, M. Doumbia, B. Hamane, P. M. Koumba
{"title":"基于人工神经网络的异步电动机直接转矩控制采用MRAS和神经PID控制器进行速度控制","authors":"M. L. Zegai, M. Bendjebbar, K. Belhadri, M. Doumbia, B. Hamane, P. M. Koumba","doi":"10.1109/EPEC.2015.7379970","DOIUrl":null,"url":null,"abstract":"This contribution deals with the proposal of direct torque control (DTC) for Induction Motor (IM) with the use of artificial neural networks (ANN) to increase the system's performance. Model Reference Adaptive System (MRAS) method is used for the estimation and regulation of rotor's speed. The whole structure of DTC is designed by Matlab/Simulink. The neural controller is designed using neural Toolbox, and the system's performance is compared with conventional DTC.","PeriodicalId":231255,"journal":{"name":"2015 IEEE Electrical Power and Energy Conference (EPEC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Direct torque control of Induction Motor based on artificial neural networks speed control using MRAS and neural PID controller\",\"authors\":\"M. L. Zegai, M. Bendjebbar, K. Belhadri, M. Doumbia, B. Hamane, P. M. Koumba\",\"doi\":\"10.1109/EPEC.2015.7379970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This contribution deals with the proposal of direct torque control (DTC) for Induction Motor (IM) with the use of artificial neural networks (ANN) to increase the system's performance. Model Reference Adaptive System (MRAS) method is used for the estimation and regulation of rotor's speed. The whole structure of DTC is designed by Matlab/Simulink. The neural controller is designed using neural Toolbox, and the system's performance is compared with conventional DTC.\",\"PeriodicalId\":231255,\"journal\":{\"name\":\"2015 IEEE Electrical Power and Energy Conference (EPEC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Electrical Power and Energy Conference (EPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEC.2015.7379970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Electrical Power and Energy Conference (EPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2015.7379970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

这篇文章讨论了利用人工神经网络(ANN)来提高感应电机(IM)直接转矩控制(DTC)系统性能的建议。采用模型参考自适应系统(MRAS)方法对转子转速进行估计和调节。采用Matlab/Simulink设计了DTC的整体结构。利用神经工具箱设计了神经控制器,并与传统的直接转矩控制系统进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct torque control of Induction Motor based on artificial neural networks speed control using MRAS and neural PID controller
This contribution deals with the proposal of direct torque control (DTC) for Induction Motor (IM) with the use of artificial neural networks (ANN) to increase the system's performance. Model Reference Adaptive System (MRAS) method is used for the estimation and regulation of rotor's speed. The whole structure of DTC is designed by Matlab/Simulink. The neural controller is designed using neural Toolbox, and the system's performance is compared with conventional DTC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信