Cheuk-Yan Au, Prabhav Mehra, Kenry W. C. Leung, R. Tong
{"title":"肌电驱动神经肌肉刺激循环系统对中风幸存者下肢的影响","authors":"Cheuk-Yan Au, Prabhav Mehra, Kenry W. C. Leung, R. Tong","doi":"10.1109/ICORR.2019.8779541","DOIUrl":null,"url":null,"abstract":"This paper describes the design of an Electromyographically(EMG)-driven Neuromuscular Electrical Stimulation (NMES) cycling system. It utilises real-time EMG from actively participating stroke survivors as feedback control to drive the cycling system for rehabilitation. The user controls the speed of the cycling system using muscle activities of the side affected recorded by EMG electrodes. Additionally, adaptable NMES stimulations; also EMG based, were provided in cyclic pattern to the respective muscle groups in order to improve muscle coordination. The targeted muscle groups used to control the system were the Hamstring (HS), Tibialis Anterior (TA), Quadriceps (QC), Gastrocnemius Lateralis (GL) of the leg on the affected side. Using the system, 20 30-minutes sessions were conducted with chronic stroke survivors (n=10) at frequency of 2–4 sessions per week. Clinical assessment scores, namely FMA_LE, BBS and 6MWT were calculated before the first session and after the completion of 20 sessions. All the assessment scores showed significant improvement after using the system; FMA_LE(P=0.0244), BBS(P=0.0156), 6MWT(P=0.0112), and SI (P=0.0258), showing that the EMG-driven NMES cycling system provides effective rehabilitation for stroke survivors in terms of muscle strength and balance.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Electromyographically-driven Neuromuscular Stimulatio Cycling System on the Lower-Limb of Stroke Survivors\",\"authors\":\"Cheuk-Yan Au, Prabhav Mehra, Kenry W. C. Leung, R. Tong\",\"doi\":\"10.1109/ICORR.2019.8779541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the design of an Electromyographically(EMG)-driven Neuromuscular Electrical Stimulation (NMES) cycling system. It utilises real-time EMG from actively participating stroke survivors as feedback control to drive the cycling system for rehabilitation. The user controls the speed of the cycling system using muscle activities of the side affected recorded by EMG electrodes. Additionally, adaptable NMES stimulations; also EMG based, were provided in cyclic pattern to the respective muscle groups in order to improve muscle coordination. The targeted muscle groups used to control the system were the Hamstring (HS), Tibialis Anterior (TA), Quadriceps (QC), Gastrocnemius Lateralis (GL) of the leg on the affected side. Using the system, 20 30-minutes sessions were conducted with chronic stroke survivors (n=10) at frequency of 2–4 sessions per week. Clinical assessment scores, namely FMA_LE, BBS and 6MWT were calculated before the first session and after the completion of 20 sessions. All the assessment scores showed significant improvement after using the system; FMA_LE(P=0.0244), BBS(P=0.0156), 6MWT(P=0.0112), and SI (P=0.0258), showing that the EMG-driven NMES cycling system provides effective rehabilitation for stroke survivors in terms of muscle strength and balance.\",\"PeriodicalId\":130415,\"journal\":{\"name\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2019.8779541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2019.8779541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Electromyographically-driven Neuromuscular Stimulatio Cycling System on the Lower-Limb of Stroke Survivors
This paper describes the design of an Electromyographically(EMG)-driven Neuromuscular Electrical Stimulation (NMES) cycling system. It utilises real-time EMG from actively participating stroke survivors as feedback control to drive the cycling system for rehabilitation. The user controls the speed of the cycling system using muscle activities of the side affected recorded by EMG electrodes. Additionally, adaptable NMES stimulations; also EMG based, were provided in cyclic pattern to the respective muscle groups in order to improve muscle coordination. The targeted muscle groups used to control the system were the Hamstring (HS), Tibialis Anterior (TA), Quadriceps (QC), Gastrocnemius Lateralis (GL) of the leg on the affected side. Using the system, 20 30-minutes sessions were conducted with chronic stroke survivors (n=10) at frequency of 2–4 sessions per week. Clinical assessment scores, namely FMA_LE, BBS and 6MWT were calculated before the first session and after the completion of 20 sessions. All the assessment scores showed significant improvement after using the system; FMA_LE(P=0.0244), BBS(P=0.0156), 6MWT(P=0.0112), and SI (P=0.0258), showing that the EMG-driven NMES cycling system provides effective rehabilitation for stroke survivors in terms of muscle strength and balance.