基于Ren-CECps语料库的汉语情感词典构建

Ji Li, F. Ren
{"title":"基于Ren-CECps语料库的汉语情感词典构建","authors":"Ji Li, F. Ren","doi":"10.1109/CCIS.2011.6045036","DOIUrl":null,"url":null,"abstract":"As a basic emotion resource, an emotion lexicon plays a very important role in the classification and recognition of emotion in text. This paper proposes an automatic approach to create a Chinese emotion lexicon with tag of emotion intensity based on the emotion corpus Ren-CECps 1.0. We present a new algorithm of emotion vector computation by making use of two language dictionaries Tongyici Cilin and HowNet. Comparing with the experimental results on verbs by SVM classification method, our approach is proved feasible and effective.","PeriodicalId":128504,"journal":{"name":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","volume":"149 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Creating a Chinese emotion lexicon based on corpus Ren-CECps\",\"authors\":\"Ji Li, F. Ren\",\"doi\":\"10.1109/CCIS.2011.6045036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a basic emotion resource, an emotion lexicon plays a very important role in the classification and recognition of emotion in text. This paper proposes an automatic approach to create a Chinese emotion lexicon with tag of emotion intensity based on the emotion corpus Ren-CECps 1.0. We present a new algorithm of emotion vector computation by making use of two language dictionaries Tongyici Cilin and HowNet. Comparing with the experimental results on verbs by SVM classification method, our approach is proved feasible and effective.\",\"PeriodicalId\":128504,\"journal\":{\"name\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"volume\":\"149 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS.2011.6045036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2011.6045036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

情感词汇作为一种基本的情感资源,在文本情感的分类和识别中起着非常重要的作用。基于情感语料库Ren-CECps 1.0,提出了一种基于情感强度标签的汉语情感词汇自动生成方法。本文利用同义词林和知网两个语言词典,提出了一种新的情感向量计算算法。通过与SVM对动词进行分类的实验结果对比,证明了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Creating a Chinese emotion lexicon based on corpus Ren-CECps
As a basic emotion resource, an emotion lexicon plays a very important role in the classification and recognition of emotion in text. This paper proposes an automatic approach to create a Chinese emotion lexicon with tag of emotion intensity based on the emotion corpus Ren-CECps 1.0. We present a new algorithm of emotion vector computation by making use of two language dictionaries Tongyici Cilin and HowNet. Comparing with the experimental results on verbs by SVM classification method, our approach is proved feasible and effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信