时间序列折线图的神经数据驱动字幕

Andrea Spreafico, G. Carenini
{"title":"时间序列折线图的神经数据驱动字幕","authors":"Andrea Spreafico, G. Carenini","doi":"10.1145/3399715.3399829","DOIUrl":null,"url":null,"abstract":"The success of neural methods for image captioning suggests that similar benefits can be reaped for generating captions for information visualizations. In this preliminary study, we focus on the very popular line charts. We propose a neural model which aims to generate text from the same data used to create a line chart. Due to the lack of suitable training corpora, we collected a dataset through crowdsourcing. Experiments indicate that our model outperforms relatively simple non-neural baselines.","PeriodicalId":149902,"journal":{"name":"Proceedings of the International Conference on Advanced Visual Interfaces","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Neural Data-Driven Captioning of Time-Series Line Charts\",\"authors\":\"Andrea Spreafico, G. Carenini\",\"doi\":\"10.1145/3399715.3399829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The success of neural methods for image captioning suggests that similar benefits can be reaped for generating captions for information visualizations. In this preliminary study, we focus on the very popular line charts. We propose a neural model which aims to generate text from the same data used to create a line chart. Due to the lack of suitable training corpora, we collected a dataset through crowdsourcing. Experiments indicate that our model outperforms relatively simple non-neural baselines.\",\"PeriodicalId\":149902,\"journal\":{\"name\":\"Proceedings of the International Conference on Advanced Visual Interfaces\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Advanced Visual Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3399715.3399829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Advanced Visual Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3399715.3399829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

神经方法用于图像字幕的成功表明,为信息可视化生成字幕也可以获得类似的好处。在这项初步研究中,我们将重点放在非常流行的折线图上。我们提出了一个神经模型,旨在从用于创建折线图的相同数据中生成文本。由于缺乏合适的训练语料库,我们通过众包的方式收集了一个数据集。实验表明,我们的模型优于相对简单的非神经基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Data-Driven Captioning of Time-Series Line Charts
The success of neural methods for image captioning suggests that similar benefits can be reaped for generating captions for information visualizations. In this preliminary study, we focus on the very popular line charts. We propose a neural model which aims to generate text from the same data used to create a line chart. Due to the lack of suitable training corpora, we collected a dataset through crowdsourcing. Experiments indicate that our model outperforms relatively simple non-neural baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信