通过局部敏感高维哈希的光度立体

Lin Zhong, J. Little
{"title":"通过局部敏感高维哈希的光度立体","authors":"Lin Zhong, J. Little","doi":"10.1109/CRV.2005.61","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the new photometric stereo method of Hertzmenn and Seitz that uses many images of an object together with a calibration object. For each point in the registered collection of images, we have a large number of brightness values. Photometric stereo finds a similar collection of brightness values from the calibration object and overdetermines the surface normal. With a large number of images, finding similar brightnesses becomes costly search in high dimensions. To speed up the search, we apply locality sensitive high dimensional hashing (LSH) to compute the irregular target object's surface orientation. The experimental results of a simplified photometric stereo experiment show consistent results in surface orientation. LSH can be implemented very efficiently and offers the possibility of practical photometric stereo computation with a large number of images.","PeriodicalId":307318,"journal":{"name":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Photometric stereo via locality sensitive high-dimension hashing\",\"authors\":\"Lin Zhong, J. Little\",\"doi\":\"10.1109/CRV.2005.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend the new photometric stereo method of Hertzmenn and Seitz that uses many images of an object together with a calibration object. For each point in the registered collection of images, we have a large number of brightness values. Photometric stereo finds a similar collection of brightness values from the calibration object and overdetermines the surface normal. With a large number of images, finding similar brightnesses becomes costly search in high dimensions. To speed up the search, we apply locality sensitive high dimensional hashing (LSH) to compute the irregular target object's surface orientation. The experimental results of a simplified photometric stereo experiment show consistent results in surface orientation. LSH can be implemented very efficiently and offers the possibility of practical photometric stereo computation with a large number of images.\",\"PeriodicalId\":307318,\"journal\":{\"name\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2005.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2005.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们扩展了赫茨门和塞茨的新的光度立体方法,该方法将一个物体的多幅图像与一个标定物体一起使用。对于配准图像集合中的每个点,我们都有大量的亮度值。光度立体从校准对象中找到类似的亮度值集合,并过度确定表面法线。对于大量的图像,在高维上寻找相似亮度的搜索成本很高。为了提高搜索速度,我们采用局部敏感高维哈希(LSH)计算不规则目标物体的表面方向。简化的光度立体实验结果在表面取向上与实验结果一致。LSH可以非常有效地实现,并为大量图像的实际光度立体计算提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photometric stereo via locality sensitive high-dimension hashing
In this paper, we extend the new photometric stereo method of Hertzmenn and Seitz that uses many images of an object together with a calibration object. For each point in the registered collection of images, we have a large number of brightness values. Photometric stereo finds a similar collection of brightness values from the calibration object and overdetermines the surface normal. With a large number of images, finding similar brightnesses becomes costly search in high dimensions. To speed up the search, we apply locality sensitive high dimensional hashing (LSH) to compute the irregular target object's surface orientation. The experimental results of a simplified photometric stereo experiment show consistent results in surface orientation. LSH can be implemented very efficiently and offers the possibility of practical photometric stereo computation with a large number of images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信