年度水力发电优化的混合元启发式算法

A. Nakib, E. Talbi, A. Fuser
{"title":"年度水力发电优化的混合元启发式算法","authors":"A. Nakib, E. Talbi, A. Fuser","doi":"10.1109/IPDPSW.2014.53","DOIUrl":null,"url":null,"abstract":"In this paper, an hybrid metaheuristic based solution is proposed to solve the annual optimal hydro generation scheduling problem. The problem of the hydro generation scheduling is formulated as a continuous non-linear optimization problem and solved using enhanced combination of metaheuristics: random greedy, evolutionnary algorithm and, pseudo dynamic programming. The obtained results upon one year of the application of the proposed method on the horizon of one year of hydropower generation (while in the literature most authors are limited to one week) demonstrate the efficiency of the proposed algorithm.","PeriodicalId":153864,"journal":{"name":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hybrid Metaheuristic for Annual Hydropower Generation Optimization\",\"authors\":\"A. Nakib, E. Talbi, A. Fuser\",\"doi\":\"10.1109/IPDPSW.2014.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an hybrid metaheuristic based solution is proposed to solve the annual optimal hydro generation scheduling problem. The problem of the hydro generation scheduling is formulated as a continuous non-linear optimization problem and solved using enhanced combination of metaheuristics: random greedy, evolutionnary algorithm and, pseudo dynamic programming. The obtained results upon one year of the application of the proposed method on the horizon of one year of hydropower generation (while in the literature most authors are limited to one week) demonstrate the efficiency of the proposed algorithm.\",\"PeriodicalId\":153864,\"journal\":{\"name\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Parallel & Distributed Processing Symposium Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2014.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Parallel & Distributed Processing Symposium Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2014.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于混合元启发式的水力发电年度最优调度问题求解方法。将水力发电调度问题描述为一个连续的非线性优化问题,并采用随机贪心、进化算法和伪动态规划等元启发式算法的强化组合进行求解。在水电发电1年的视界上(文献中大多数作者限定为1周),本文方法应用1年后得到的结果证明了本文算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Metaheuristic for Annual Hydropower Generation Optimization
In this paper, an hybrid metaheuristic based solution is proposed to solve the annual optimal hydro generation scheduling problem. The problem of the hydro generation scheduling is formulated as a continuous non-linear optimization problem and solved using enhanced combination of metaheuristics: random greedy, evolutionnary algorithm and, pseudo dynamic programming. The obtained results upon one year of the application of the proposed method on the horizon of one year of hydropower generation (while in the literature most authors are limited to one week) demonstrate the efficiency of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信