卷积因子分析启发了压缩感知

Xin Yuan, Yunchen Pu
{"title":"卷积因子分析启发了压缩感知","authors":"Xin Yuan, Yunchen Pu","doi":"10.1109/ICIP.2017.8296341","DOIUrl":null,"url":null,"abstract":"We solve the compressive sensing problem via convolutional factor analysis, where the convolutional dictionaries are learned in situ from the compressed measurements. An alternating direction method of multipliers (ADMM) paradigm for compressive sensing inversion based on convolutional factor analysis is developed. The proposed algorithm provides reconstructed images as well as features, which can be directly used for recognition (e.g., classification) tasks. We demonstrate that using ∼ 30% (relative to pixel numbers) compressed measurements, the proposed model achieves the classification accuracy comparable to the original data on MNIST.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"723 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Convolutional factor analysis inspired compressive sensing\",\"authors\":\"Xin Yuan, Yunchen Pu\",\"doi\":\"10.1109/ICIP.2017.8296341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We solve the compressive sensing problem via convolutional factor analysis, where the convolutional dictionaries are learned in situ from the compressed measurements. An alternating direction method of multipliers (ADMM) paradigm for compressive sensing inversion based on convolutional factor analysis is developed. The proposed algorithm provides reconstructed images as well as features, which can be directly used for recognition (e.g., classification) tasks. We demonstrate that using ∼ 30% (relative to pixel numbers) compressed measurements, the proposed model achieves the classification accuracy comparable to the original data on MNIST.\",\"PeriodicalId\":229602,\"journal\":{\"name\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"723 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2017.8296341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们通过卷积因子分析解决压缩感知问题,其中卷积字典从压缩测量中就地学习。提出了一种基于卷积因子分析的交替方向乘数法(ADMM)范式压缩感知反演方法。该算法提供重构图像和特征,可直接用于识别(如分类)任务。我们证明,使用~ 30%(相对于像素数)压缩测量,所提出的模型在MNIST上实现了与原始数据相当的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional factor analysis inspired compressive sensing
We solve the compressive sensing problem via convolutional factor analysis, where the convolutional dictionaries are learned in situ from the compressed measurements. An alternating direction method of multipliers (ADMM) paradigm for compressive sensing inversion based on convolutional factor analysis is developed. The proposed algorithm provides reconstructed images as well as features, which can be directly used for recognition (e.g., classification) tasks. We demonstrate that using ∼ 30% (relative to pixel numbers) compressed measurements, the proposed model achieves the classification accuracy comparable to the original data on MNIST.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信