{"title":"基于特征转换系统的输入输出一致性测试","authors":"Harsh Beohar, M. Mousavi","doi":"10.1145/2554850.2554949","DOIUrl":null,"url":null,"abstract":"We extend the theory of input-output conformance testing to the setting of software product lines. In particular, we allow for input-output featured transition systems to be used as the basis for generating test suites and test cases. We introduce refinement operators both at the level of models and at the level of test suites that allow for projecting them into a specific product configuration (or a product sub-line). We show that the two sorts of refinement are consistent and lead to the same set of test-cases.","PeriodicalId":285655,"journal":{"name":"Proceedings of the 29th Annual ACM Symposium on Applied Computing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Input-output conformance testing based on featured transition systems\",\"authors\":\"Harsh Beohar, M. Mousavi\",\"doi\":\"10.1145/2554850.2554949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the theory of input-output conformance testing to the setting of software product lines. In particular, we allow for input-output featured transition systems to be used as the basis for generating test suites and test cases. We introduce refinement operators both at the level of models and at the level of test suites that allow for projecting them into a specific product configuration (or a product sub-line). We show that the two sorts of refinement are consistent and lead to the same set of test-cases.\",\"PeriodicalId\":285655,\"journal\":{\"name\":\"Proceedings of the 29th Annual ACM Symposium on Applied Computing\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th Annual ACM Symposium on Applied Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2554850.2554949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th Annual ACM Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554850.2554949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Input-output conformance testing based on featured transition systems
We extend the theory of input-output conformance testing to the setting of software product lines. In particular, we allow for input-output featured transition systems to be used as the basis for generating test suites and test cases. We introduce refinement operators both at the level of models and at the level of test suites that allow for projecting them into a specific product configuration (or a product sub-line). We show that the two sorts of refinement are consistent and lead to the same set of test-cases.