一种加速异构节点虚拟筛选分子对接应用的混合方法:POSTER

E. Vitali, D. Gadioli, A. Beccari, C. Cavazzoni, C. Silvano, G. Palermo
{"title":"一种加速异构节点虚拟筛选分子对接应用的混合方法:POSTER","authors":"E. Vitali, D. Gadioli, A. Beccari, C. Cavazzoni, C. Silvano, G. Palermo","doi":"10.1145/3310273.3323426","DOIUrl":null,"url":null,"abstract":"Molecular Docking is a crucial task in the process of Drug Discovery. This task consists in the estimation of the position of a molecule inside the docking site. It is used in the early stages of the drug discovery process to perform a virtual screening of a large library of molecule candidates. This task is usually performed using High Performance Computing platforms, due to sheer number of candidates and due to complexity of the docking problem. In this work we ported and optimized a Molecular Docking Module to an heterogeneous system with one or more GPGPU accelerators, leveraging the directive languages OpenMP and OpenACC. We show that with the proposed approach, we are able to reach a better utilization of the available resources compared to the usual CPU/GPU data splitting, reaching a 25% throughput improvement within the single node.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An hybrid approach to accelerate a molecular docking application for virtual screening in heterogeneous nodes: POSTER\",\"authors\":\"E. Vitali, D. Gadioli, A. Beccari, C. Cavazzoni, C. Silvano, G. Palermo\",\"doi\":\"10.1145/3310273.3323426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular Docking is a crucial task in the process of Drug Discovery. This task consists in the estimation of the position of a molecule inside the docking site. It is used in the early stages of the drug discovery process to perform a virtual screening of a large library of molecule candidates. This task is usually performed using High Performance Computing platforms, due to sheer number of candidates and due to complexity of the docking problem. In this work we ported and optimized a Molecular Docking Module to an heterogeneous system with one or more GPGPU accelerators, leveraging the directive languages OpenMP and OpenACC. We show that with the proposed approach, we are able to reach a better utilization of the available resources compared to the usual CPU/GPU data splitting, reaching a 25% throughput improvement within the single node.\",\"PeriodicalId\":431860,\"journal\":{\"name\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310273.3323426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3323426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分子对接是药物发现过程中的一项重要任务。这项任务包括估计分子在对接点内的位置。它用于药物发现过程的早期阶段,对大量候选分子库进行虚拟筛选。由于候选节点的数量和对接问题的复杂性,该任务通常使用高性能计算平台执行。在这项工作中,我们利用指令语言OpenMP和OpenACC,将一个分子对接模块移植并优化到一个具有一个或多个GPGPU加速器的异构系统。我们表明,与通常的CPU/GPU数据分割相比,使用所提出的方法,我们能够更好地利用可用资源,在单个节点内达到25%的吞吐量改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An hybrid approach to accelerate a molecular docking application for virtual screening in heterogeneous nodes: POSTER
Molecular Docking is a crucial task in the process of Drug Discovery. This task consists in the estimation of the position of a molecule inside the docking site. It is used in the early stages of the drug discovery process to perform a virtual screening of a large library of molecule candidates. This task is usually performed using High Performance Computing platforms, due to sheer number of candidates and due to complexity of the docking problem. In this work we ported and optimized a Molecular Docking Module to an heterogeneous system with one or more GPGPU accelerators, leveraging the directive languages OpenMP and OpenACC. We show that with the proposed approach, we are able to reach a better utilization of the available resources compared to the usual CPU/GPU data splitting, reaching a 25% throughput improvement within the single node.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信