Spandan Manna, Dennis Hoffmann, J. Hesselbarth, Adrien Guth, D. Heberling
{"title":"毫米波球形介电谐振器天线阵列","authors":"Spandan Manna, Dennis Hoffmann, J. Hesselbarth, Adrien Guth, D. Heberling","doi":"10.1109/USNC-URSI52151.2023.10238096","DOIUrl":null,"url":null,"abstract":"This work presents a new design technique to realize a microstrip resonator fed spherical dielectric resonator antenna (DRA) and $2\\times 2$ array at 36 GHz. The dielectric resonators can be placed on thin planar circuit board or on-chip. Vertical metallic walls around radiators eliminate the otherwise high sidelobes known for the spherical DRA. In the array, the metallic walls also contribute to a reduction of mutual coupling. Simulations, verified by measurements, show significant reduction of sidelobes and mutual coupling, while the impedance bandwidth of the in-phase fed $2\\times 2$ array reduces from 7.3% to 3.5%.","PeriodicalId":383636,"journal":{"name":"2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Millimeter-Wave Spherical Dielectric Resonator Antenna Array\",\"authors\":\"Spandan Manna, Dennis Hoffmann, J. Hesselbarth, Adrien Guth, D. Heberling\",\"doi\":\"10.1109/USNC-URSI52151.2023.10238096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a new design technique to realize a microstrip resonator fed spherical dielectric resonator antenna (DRA) and $2\\\\times 2$ array at 36 GHz. The dielectric resonators can be placed on thin planar circuit board or on-chip. Vertical metallic walls around radiators eliminate the otherwise high sidelobes known for the spherical DRA. In the array, the metallic walls also contribute to a reduction of mutual coupling. Simulations, verified by measurements, show significant reduction of sidelobes and mutual coupling, while the impedance bandwidth of the in-phase fed $2\\\\times 2$ array reduces from 7.3% to 3.5%.\",\"PeriodicalId\":383636,\"journal\":{\"name\":\"2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/USNC-URSI52151.2023.10238096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USNC-URSI52151.2023.10238096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This work presents a new design technique to realize a microstrip resonator fed spherical dielectric resonator antenna (DRA) and $2\times 2$ array at 36 GHz. The dielectric resonators can be placed on thin planar circuit board or on-chip. Vertical metallic walls around radiators eliminate the otherwise high sidelobes known for the spherical DRA. In the array, the metallic walls also contribute to a reduction of mutual coupling. Simulations, verified by measurements, show significant reduction of sidelobes and mutual coupling, while the impedance bandwidth of the in-phase fed $2\times 2$ array reduces from 7.3% to 3.5%.