{"title":"遗传量子算法及其在组合优化问题中的应用","authors":"Kuk-Hyun Han, Jong-Hwan Kim","doi":"10.1109/CEC.2000.870809","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel evolutionary computing method called a genetic quantum algorithm (GQA). GQA is based on the concept and principles of quantum computing such as qubits and superposition of states. Instead of binary, numeric, or symbolic representation, by adopting qubit chromosome as a representation GQA can represent a linear superposition of solutions due to its probabilistic representation. As genetic operators, quantum gates are employed for the search of the best solution. Rapid convergence and good global search capability characterize the performance of GQA. The effectiveness and the applicability of GQA are demonstrated by experimental results on the knapsack problem, which is a well-known combinatorial optimization problem. The results show that GQA is superior to other genetic algorithms using penalty functions, repair methods and decoders.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"650","resultStr":"{\"title\":\"Genetic quantum algorithm and its application to combinatorial optimization problem\",\"authors\":\"Kuk-Hyun Han, Jong-Hwan Kim\",\"doi\":\"10.1109/CEC.2000.870809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel evolutionary computing method called a genetic quantum algorithm (GQA). GQA is based on the concept and principles of quantum computing such as qubits and superposition of states. Instead of binary, numeric, or symbolic representation, by adopting qubit chromosome as a representation GQA can represent a linear superposition of solutions due to its probabilistic representation. As genetic operators, quantum gates are employed for the search of the best solution. Rapid convergence and good global search capability characterize the performance of GQA. The effectiveness and the applicability of GQA are demonstrated by experimental results on the knapsack problem, which is a well-known combinatorial optimization problem. The results show that GQA is superior to other genetic algorithms using penalty functions, repair methods and decoders.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"650\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic quantum algorithm and its application to combinatorial optimization problem
This paper proposes a novel evolutionary computing method called a genetic quantum algorithm (GQA). GQA is based on the concept and principles of quantum computing such as qubits and superposition of states. Instead of binary, numeric, or symbolic representation, by adopting qubit chromosome as a representation GQA can represent a linear superposition of solutions due to its probabilistic representation. As genetic operators, quantum gates are employed for the search of the best solution. Rapid convergence and good global search capability characterize the performance of GQA. The effectiveness and the applicability of GQA are demonstrated by experimental results on the knapsack problem, which is a well-known combinatorial optimization problem. The results show that GQA is superior to other genetic algorithms using penalty functions, repair methods and decoders.