Taiga Goto, Y. Sato, Shota Kondo, M. Tomita, M. Hasegawa, S. Doki, S. Kato
{"title":"基于扩展电动势的全阶观测器无位置速度传感器控制,提出了一种新的观测器设计方法","authors":"Taiga Goto, Y. Sato, Shota Kondo, M. Tomita, M. Hasegawa, S. Doki, S. Kato","doi":"10.1109/ICELMACH.2014.6960282","DOIUrl":null,"url":null,"abstract":"The reduced order observer (disturbance observer) based on the the extended electromotive force(eemf) model, which can be applied to the position and velocity sensorless control for all synchronous motors included IPMSMs(Interior Permanent Magnet Synchronous Motors), had been proposed by authors. However, the design of a full-order eemf observer is difficult, because the error equations of the observers become ones of the fourth order. Therefore, this paper proposes a design method of the full-order eemf observer whose objective is the robust position estimation against the velocity estimation error, using H∞ control theory. Moreover, a new design method of the more robust full-order eemf observer is proposed by restudying the error system of the observer, and the simulation and experimental results of the position and velocity sensorless control of IPMSM under the maximum torque per ampere(MTPA) show that a new design method of the full-order eemf observer is very useful.","PeriodicalId":288960,"journal":{"name":"2014 International Conference on Electrical Machines (ICEM)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Position and velocity sensorless control of IPMSM using full-order observer based on extended electromotive force with a new observer design method\",\"authors\":\"Taiga Goto, Y. Sato, Shota Kondo, M. Tomita, M. Hasegawa, S. Doki, S. Kato\",\"doi\":\"10.1109/ICELMACH.2014.6960282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reduced order observer (disturbance observer) based on the the extended electromotive force(eemf) model, which can be applied to the position and velocity sensorless control for all synchronous motors included IPMSMs(Interior Permanent Magnet Synchronous Motors), had been proposed by authors. However, the design of a full-order eemf observer is difficult, because the error equations of the observers become ones of the fourth order. Therefore, this paper proposes a design method of the full-order eemf observer whose objective is the robust position estimation against the velocity estimation error, using H∞ control theory. Moreover, a new design method of the more robust full-order eemf observer is proposed by restudying the error system of the observer, and the simulation and experimental results of the position and velocity sensorless control of IPMSM under the maximum torque per ampere(MTPA) show that a new design method of the full-order eemf observer is very useful.\",\"PeriodicalId\":288960,\"journal\":{\"name\":\"2014 International Conference on Electrical Machines (ICEM)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Electrical Machines (ICEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICELMACH.2014.6960282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electrical Machines (ICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICELMACH.2014.6960282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Position and velocity sensorless control of IPMSM using full-order observer based on extended electromotive force with a new observer design method
The reduced order observer (disturbance observer) based on the the extended electromotive force(eemf) model, which can be applied to the position and velocity sensorless control for all synchronous motors included IPMSMs(Interior Permanent Magnet Synchronous Motors), had been proposed by authors. However, the design of a full-order eemf observer is difficult, because the error equations of the observers become ones of the fourth order. Therefore, this paper proposes a design method of the full-order eemf observer whose objective is the robust position estimation against the velocity estimation error, using H∞ control theory. Moreover, a new design method of the more robust full-order eemf observer is proposed by restudying the error system of the observer, and the simulation and experimental results of the position and velocity sensorless control of IPMSM under the maximum torque per ampere(MTPA) show that a new design method of the full-order eemf observer is very useful.