F. Hutter, H. Hoos, Kevin Leyton-Brown, Kevin P. Murphy
{"title":"基于模型的参数优化的实验研究:SPO及其他","authors":"F. Hutter, H. Hoos, Kevin Leyton-Brown, Kevin P. Murphy","doi":"10.1145/1569901.1569940","DOIUrl":null,"url":null,"abstract":"This work experimentally investigates model-based approaches for optimising the performance of parameterised randomised algorithms. We restrict our attention to procedures based on Gaussian process models, the most widely-studied family of models for this problem. We evaluated two approaches from the literature, and found that sequential parameter optimisation (SPO) [4] offered the most robust performance. We then investigated key design decisions within the SPO paradigm, characterising the performance consequences of each. Based on these findings, we propose a new version of SPO, dubbed SPO+, which extends SPO with a novel intensification procedure and log-transformed response values. Finally, in a domain for which performance results for other (model-free) parameter optimisation approaches are available, we demonstrate that SPO+ achieves state-of-the-art performance.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"An experimental investigation of model-based parameter optimisation: SPO and beyond\",\"authors\":\"F. Hutter, H. Hoos, Kevin Leyton-Brown, Kevin P. Murphy\",\"doi\":\"10.1145/1569901.1569940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work experimentally investigates model-based approaches for optimising the performance of parameterised randomised algorithms. We restrict our attention to procedures based on Gaussian process models, the most widely-studied family of models for this problem. We evaluated two approaches from the literature, and found that sequential parameter optimisation (SPO) [4] offered the most robust performance. We then investigated key design decisions within the SPO paradigm, characterising the performance consequences of each. Based on these findings, we propose a new version of SPO, dubbed SPO+, which extends SPO with a novel intensification procedure and log-transformed response values. Finally, in a domain for which performance results for other (model-free) parameter optimisation approaches are available, we demonstrate that SPO+ achieves state-of-the-art performance.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1569940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An experimental investigation of model-based parameter optimisation: SPO and beyond
This work experimentally investigates model-based approaches for optimising the performance of parameterised randomised algorithms. We restrict our attention to procedures based on Gaussian process models, the most widely-studied family of models for this problem. We evaluated two approaches from the literature, and found that sequential parameter optimisation (SPO) [4] offered the most robust performance. We then investigated key design decisions within the SPO paradigm, characterising the performance consequences of each. Based on these findings, we propose a new version of SPO, dubbed SPO+, which extends SPO with a novel intensification procedure and log-transformed response values. Finally, in a domain for which performance results for other (model-free) parameter optimisation approaches are available, we demonstrate that SPO+ achieves state-of-the-art performance.