Weihaw Chuang, S. Narayanasamy, Ganesh Venkatesh, J. Sampson, Michael Van Biesbrouck, Gilles A. Pokam, B. Calder, O. Colavin
{"title":"无界的基于页面的事务性内存","authors":"Weihaw Chuang, S. Narayanasamy, Ganesh Venkatesh, J. Sampson, Michael Van Biesbrouck, Gilles A. Pokam, B. Calder, O. Colavin","doi":"10.1145/1168857.1168901","DOIUrl":null,"url":null,"abstract":"Exploiting thread level parallelism is paramount in the multicore era. Transactions enable programmers to expose such parallelism by greatly simplifying the multi-threaded programming model. Virtualized transactions (unbounded in space and time) are desirable, as they can increase the scope of transactions' use, and thereby further simplify a programmer's job. However, hardware support is essential to support efficient execution of unbounded transactions. In this paper, we introduce Page-based Transactional Memory to support unbounded transactions. We combine transaction bookkeeping with the virtual memory system to support fast transaction conflict detection, commit, abort, and to maintain transactions' speculative data.","PeriodicalId":270694,"journal":{"name":"ASPLOS XII","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"Unbounded page-based transactional memory\",\"authors\":\"Weihaw Chuang, S. Narayanasamy, Ganesh Venkatesh, J. Sampson, Michael Van Biesbrouck, Gilles A. Pokam, B. Calder, O. Colavin\",\"doi\":\"10.1145/1168857.1168901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploiting thread level parallelism is paramount in the multicore era. Transactions enable programmers to expose such parallelism by greatly simplifying the multi-threaded programming model. Virtualized transactions (unbounded in space and time) are desirable, as they can increase the scope of transactions' use, and thereby further simplify a programmer's job. However, hardware support is essential to support efficient execution of unbounded transactions. In this paper, we introduce Page-based Transactional Memory to support unbounded transactions. We combine transaction bookkeeping with the virtual memory system to support fast transaction conflict detection, commit, abort, and to maintain transactions' speculative data.\",\"PeriodicalId\":270694,\"journal\":{\"name\":\"ASPLOS XII\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASPLOS XII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1168857.1168901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASPLOS XII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1168857.1168901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting thread level parallelism is paramount in the multicore era. Transactions enable programmers to expose such parallelism by greatly simplifying the multi-threaded programming model. Virtualized transactions (unbounded in space and time) are desirable, as they can increase the scope of transactions' use, and thereby further simplify a programmer's job. However, hardware support is essential to support efficient execution of unbounded transactions. In this paper, we introduce Page-based Transactional Memory to support unbounded transactions. We combine transaction bookkeeping with the virtual memory system to support fast transaction conflict detection, commit, abort, and to maintain transactions' speculative data.