航空航天结构和医学无损检测中的多分辨率方法

R. Osegueda, Y. Mendoza, O. Kosheleva, V. Kreinovich
{"title":"航空航天结构和医学无损检测中的多分辨率方法","authors":"R. Osegueda, Y. Mendoza, O. Kosheleva, V. Kreinovich","doi":"10.1109/ISIC.1999.796656","DOIUrl":null,"url":null,"abstract":"Thorough testing of a huge aerospace structures results in a large amount of data, and long processing time. To decrease the processing time, we use a \"multi-resolution\" technique, in which we first separate the data into data corresponding to different vibration modes, and then combine these data together. We show how a general methodology for choosing the optimal uncertainty representation can be used to find the optimal uncertainty representations for this particular problem. Namely, we show that the problem of finding the best approximation to the probability of detection (POD) curve can be solved similarly to the problem of finding the best activation function in neural networks. A similar approach can be used in detecting faults in medical images.","PeriodicalId":300130,"journal":{"name":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multi-resolution methods in non-destructive testing of aerospace structures and in medicine\",\"authors\":\"R. Osegueda, Y. Mendoza, O. Kosheleva, V. Kreinovich\",\"doi\":\"10.1109/ISIC.1999.796656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thorough testing of a huge aerospace structures results in a large amount of data, and long processing time. To decrease the processing time, we use a \\\"multi-resolution\\\" technique, in which we first separate the data into data corresponding to different vibration modes, and then combine these data together. We show how a general methodology for choosing the optimal uncertainty representation can be used to find the optimal uncertainty representations for this particular problem. Namely, we show that the problem of finding the best approximation to the probability of detection (POD) curve can be solved similarly to the problem of finding the best activation function in neural networks. A similar approach can be used in detecting faults in medical images.\",\"PeriodicalId\":300130,\"journal\":{\"name\":\"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1999.796656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1999.796656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

对大型航天结构进行全面测试,数据量大,处理时间长。为了减少处理时间,我们使用了“多分辨率”技术,首先将数据分离成不同振动模式对应的数据,然后将这些数据组合在一起。我们展示了如何使用选择最优不确定性表示的一般方法来找到这个特定问题的最优不确定性表示。也就是说,我们证明了寻找检测概率(POD)曲线的最佳逼近问题可以类似于寻找神经网络中的最佳激活函数问题来解决。类似的方法可用于检测医学图像中的故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-resolution methods in non-destructive testing of aerospace structures and in medicine
Thorough testing of a huge aerospace structures results in a large amount of data, and long processing time. To decrease the processing time, we use a "multi-resolution" technique, in which we first separate the data into data corresponding to different vibration modes, and then combine these data together. We show how a general methodology for choosing the optimal uncertainty representation can be used to find the optimal uncertainty representations for this particular problem. Namely, we show that the problem of finding the best approximation to the probability of detection (POD) curve can be solved similarly to the problem of finding the best activation function in neural networks. A similar approach can be used in detecting faults in medical images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信