Adi Sujiwo, E. Takeuchi, Luis Yoichi Morales Saiki, Naoki Akai, Y. Ninomiya, M. Edahiro
{"title":"基于多个视觉度量地图的定位","authors":"Adi Sujiwo, E. Takeuchi, Luis Yoichi Morales Saiki, Naoki Akai, Y. Ninomiya, M. Edahiro","doi":"10.1109/MFI.2017.8170431","DOIUrl":null,"url":null,"abstract":"This paper presents a fusion of monocular camera-based metric localization, IMU and odometry in dynamic environments of public roads. We build multiple vision-based maps and use them at the same time in localization phase. For the mapping phase, visual maps are built by employing ORB-SLAM and accurate metric positioning from LiDAR-based NDT scan matching. This external positioning is utilized to correct for scale drift inherent in all vision-based SLAM methods. Next in the localization phase, these embedded positions are used to estimate the vehicle pose in metric global coordinates using solely monocular camera. Furthermore, to increase system robustness we also proposed utilization of multiple maps and sensor fusion with odometry and IMU using particle filter method. Experimental testing were performed through public road environment as far as 170 km at different times of day to evaluate and compare localization results of vision-only, GNSS and sensor fusion methods. The results show that sensor fusion method offers lower average errors than GNSS and better coverage than vision-only one.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Localization based on multiple visual-metric maps\",\"authors\":\"Adi Sujiwo, E. Takeuchi, Luis Yoichi Morales Saiki, Naoki Akai, Y. Ninomiya, M. Edahiro\",\"doi\":\"10.1109/MFI.2017.8170431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fusion of monocular camera-based metric localization, IMU and odometry in dynamic environments of public roads. We build multiple vision-based maps and use them at the same time in localization phase. For the mapping phase, visual maps are built by employing ORB-SLAM and accurate metric positioning from LiDAR-based NDT scan matching. This external positioning is utilized to correct for scale drift inherent in all vision-based SLAM methods. Next in the localization phase, these embedded positions are used to estimate the vehicle pose in metric global coordinates using solely monocular camera. Furthermore, to increase system robustness we also proposed utilization of multiple maps and sensor fusion with odometry and IMU using particle filter method. Experimental testing were performed through public road environment as far as 170 km at different times of day to evaluate and compare localization results of vision-only, GNSS and sensor fusion methods. The results show that sensor fusion method offers lower average errors than GNSS and better coverage than vision-only one.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a fusion of monocular camera-based metric localization, IMU and odometry in dynamic environments of public roads. We build multiple vision-based maps and use them at the same time in localization phase. For the mapping phase, visual maps are built by employing ORB-SLAM and accurate metric positioning from LiDAR-based NDT scan matching. This external positioning is utilized to correct for scale drift inherent in all vision-based SLAM methods. Next in the localization phase, these embedded positions are used to estimate the vehicle pose in metric global coordinates using solely monocular camera. Furthermore, to increase system robustness we also proposed utilization of multiple maps and sensor fusion with odometry and IMU using particle filter method. Experimental testing were performed through public road environment as far as 170 km at different times of day to evaluate and compare localization results of vision-only, GNSS and sensor fusion methods. The results show that sensor fusion method offers lower average errors than GNSS and better coverage than vision-only one.